
1

TACTIC Developer

Table of Contents
Developer Start-up .. 4

Development Concepts ... 4
Architecture Overview .. 4
The TACTIC Script Editor .. 7

Client API ... 12
Client API Setup ... 12
Client API Structure ... 15
Basic Operations in Python and Javascript ... 17
Checkin / Checkout Operations ... 21
Snapshot Dependency ... 27

Changes ... 29
Search ID to Search Code ... 29

Custom Widgets ... 30
Widget Architecture ... 30
Custom Layout Editor .. 34
Custom Widget Basics .. 44
Widget Development .. 52

Plugins .. 61
Plugin Manager interface .. 61
Create a Plugin .. 62
Packaging a Plugin .. 64

Expression Development .. 65
Using Expressions in Scripting ... 65

Validation .. 67
Validation Set-up ... 67

TACTIC Python Client API Reference ... 68
__init__ ... 69
abort ... 70
add_config_element ... 71
add_dependency .. 73
add_dependency_by_code ... 74
add_directory .. 75
add_file ... 77
add_group .. 80
add_initial_tasks .. 81
build_search_key ... 82
build_search_type .. 83
checkout .. 84
clear_upload_dir .. 85
connect_sobjects .. 86
create_search_type ... 87
create_snapshot ... 88
create_task ... 89
delete_sobject ... 90
directory_checkin .. 91
download ... 92
eval ... 93

TACTIC Developer

2

execute_cmd ... 94
execute_pipeline .. 95
execute_python_script .. 96
finish ... 97
generate_ticket .. 98
get_all_children ... 99
get_all_dependencies .. 100
get_all_paths_from_snapshot .. 101
get_base_dirs .. 102
get_by_code .. 103
get_by_search_key ... 104
get_child_types .. 105
get_client_api_version ... 106
get_client_dir .. 107
get_client_version .. 109
get_column_info .. 110
get_column_names ... 111
get_config_definition .. 112
get_connected_sobject ... 113
get_connected_sobjects ... 114
get_dependencies ... 115
get_expanded_paths_from_snapshot .. 116
get_full_snapshot_xml .. 117
get_handoff_dir ... 118
get_home_dir .. 119
get_info_from_user .. 120
get_md5_info .. 121
get_parent ... 122
get_parent_type ... 123
get_path_from_snapshot .. 124
get_paths .. 126
get_pipeline_processes .. 127
get_pipeline_processes_info ... 128
get_pipeline_xml .. 129
get_pipeline_xml_info ... 130
get_plugin_dir ... 131
get_preallocated_path ... 132
get_protocol .. 134
get_related_types ... 135
get_resource_path .. 136
get_server_api_version .. 137
get_server_version .. 138
get_snapshot ... 139
get_table_info .. 141
get_ticket .. 142
get_types_from_instance ... 143
get_unique_sobject ... 144
get_virtual_snapshot_path .. 145
get_widget .. 147
get_widget_setting ... 148
group_checkin ... 149
insert ... 150
insert_multiple ... 152
insert_update ... 153

TACTIC Developer

3

log .. 154
query ... 155
query_snapshots ... 157
reactivate_sobject ... 158
redo ... 159
retire_sobject ... 160
set_config_definition .. 161
set_current_snapshot ... 162
set_login_ticket .. 163
set_project .. 164
set_protocol .. 165
set_server ... 166
set_widget_setting .. 167
simple_checkin .. 168
split_search_key .. 170
start ... 171
undo .. 172
update .. 173
update_config .. 174
update_multiple ... 175
upload_file .. 176

TACTIC Developer

4

Developer Start-up

Development Concepts

Introduction

The term "asset" is used often, and has many different meanings in different industries and even in different areas of
the same production facility. In TACTIC, an asset is an atomic entity with metadata and files associated with it. To
avoid confusion, the TACTIC assets are called "searchable objects," shortened to sObjects.

sObjects

sObjects are the atomic entities (or assets) that TACTIC uses to manipulate data and check in files. An sObject can
be any entity required in a production. Examples of sObjects include shots, textures, users, tasks, production notes,
and so on.

Every sObject must belong to a search type, also known as sType. Search types are a set of unique string entities
that serve to classify all variations of sObjects. Search types are registered in the "search_object" table in the "sthpw"
database. This table defines the properties for each search type, and is used to ensure that sObjects adheres to their
search type properties. For instance, in a custom project, you may have a custom/shot sType created for shot. Once
it's registered, you can add shot entries in the shot table that it generates. The shot entries are the shot sObjects.

It is technically possible to store data on assets anywhere, but the TACTIC approach is to use an SQL database so
sObject data can be tracked in the database and rules can be enforced. In TACTIC, each sObject is represented as a
table in the database. All sObjects for your project are stored in a project-wide database and cross-project sObjects
(for example, those related to users) are stored in the main TACTIC database "sthpw."

Architecture Overview

The TACTIC architecture is an MVC architecture with the following major components:

SObject - Model(M) Provides the data model. All interactions with the data model use sObjects
and their derived classes.

Widget - View(V) Provides the display model, which determines the user interface and how
users interact with the web application. The display architecture is built
upon hierarchical widgets that are SObject-aware (that is, they use sObjects
to define the interface).

Command - Command(C) Provides higher-level interactions with the data model. All actions affecting
the data model or the filesystem must go through a command layer so that
the changes can be tracked and completely undoable should something go
wrong.

Search Provides a search model so widgets can obtain the SObjects they need
to complete the interface display. Each type of sObject has a registered
name which is used in the search engine to identify which sType to search.
This provides a consistent interface to access all sObjects regardless of the
location of the sObject in the database or table.

In summary, widgets make use of the Search, get SObjects, and use commands to change persistent data. The sObject
communication unit binds the view layer with the data model.

TACTIC Developer

5

Main Data Objects

SObjects (searchable objects) are atomic, self-contained units that contain attributes. A particular sObject can be
uniquely identified by two parameters: a search type and a search ID. Often these two parameters are combined into a
"search key" defined as <search_type>|<search_id> (joined with the "|" character). Search keys allow you to uniquely
identify any SObject using a single string.

Particular SObjects are obtained using the search engine, which generally returns a list of SObjects. The search engine
is flexible enough to allow arbitrary bits of SQL code to be used for a search, although that approach is discouraged.
(To maximize code reuse, it is better to put SQL code inside the low-level business objects that provide static functions
to higher level parts of the framework.)

Widgets are the atomic drawing units. Typically, widgets are SObject-aware and can perform and affect searches
and draw SObjects. Widgets can contain children, and many function calls will traverse down to their children. For
example, a widget can be assigned a search object. It will perform this search and pass the results to all of its children
widgets, who will make use of the result as necessary.

One important widget function is the get_display() function, which draws widgets and can generate HTML. This
function can be as simple as just drawing something that has nothing to do with sObject data, or can be a complicated
function retrieving and displaying sObjects and all of their child sObjects.

Widgets

Widgets determine how users interact with the web application. They have a number of useful properties that allow
for the rapid development of web applications. For example, they can have a search assigned to them to locate and
retrieve sObjects. They can typically perform actions across the search results, affecting multiple SObjects.

Widgets call events and listen to events, allowing for inter-widget communication. They interact with each other in
the web application by registering events. For example, one widget, on initialization, may register itself as a listener
for a named event. Another widget may call the named event upon an arbitrary action, at which point all widgets that
are registered listeners for that event will be executed. This type of interaction allows for multiple actions to occur
as a result of a user interaction, such as the click of a single button.

Checkin/checkout is the framework for filesystem interaction. All interaction within the checkin/checkout framework
is done through the SObjects themselves so that they can determine their own checkin/checkout conditions and
mechanisms. The checkin framework creates a 'snapshot' SObject that is related to the original SObject through a
search_id. It assigns a unique file ID for every transaction, and creates snapshot attributes for the SObjects.

Engineering requirements for a particular application must be gathered and translated into widgets, including
definitions of the widgets' relationships to each other.

AJAX Widgets

TACTIC's widget hierarchy falls naturally within the AJAX paradigm, where widgets are capable of redrawing
themselves. Instead of refreshing the entire page, AJAX widgets actively gather the required information from the
page and send only that information to the web server (as opposed to the entire contents of the page). The widget
then processes the information and updates itself. This technique makes a much more interactive application because
the web server only has to draw the individual widget element instead of the entire page. In addition to a faster and
more interactive experience, AJAX widgets significantly reduce the overall load on the web server, making TACTIC
far more scalable with the same resources.

TACTIC's interface runs on top the the client API, therefore all interaction between the client and the server run
on an XMLRPC layer resting on top of AJAX. This is very convenient for complex interactions between the client
and the server.

Web Drawing Engine

TACTIC Developer

6

This drawing engine is based on numerous interface platforms generally geared towards traditional application design.
However, it has be adjusted to accommodate the unique web environment. A typical application would define a
number of predefined widgets and assemble them in a hierarchical relationship.

Specialized widgets must be created to serve specific functions: for example, checkin/checkout widgets, download
widgets, upload widgets, and navigation widgets.

Persistent Store

All metadata is stored in an industry-standard SQL database. The database tables and rows are clearly marked and
readable, so it is easy to access the data directly. In today's fast-changing environment, it is essential to be able to
quickly read and understand the underlying data stored to be able to maintain proper support for diagnosing and
fixing problems.

All data is accessed through sObject entities, which provide the object relational mappings to the database tables. In
general, a single sObject is represented by a row in the table of a database. The table defines the type of SObjects
stored in it, and there is usually a one-to-one relationship between the attributes of each sObject and the columns
in the database.

Directory and File Naming Conventions

It is just as critical to be able to navigate the filesystem and understand what is located there. Therefore, advanced
naming conventions are filtered through naming classes, which use clear procedures to create filenames based
on metadata in the database. On the other hand, naming conventions can be driven by some expressions such as
{sobject.code}_{snapshot.context}_v{snapshot.version}.{ext}.

Directories and file naming are handled slightly differently. TACTIC builds file names procedurally and then stores
them in the database. On the other hand, TACTIC never stores directory names directly in the database, but always
builds them up procedurally. This additional level of abstraction provides the opportunity to reorganize your asset
structure as needed (because the directory structure isn't hard-coded). Note that there may be other dependencies
that are outside the control of TACTIC, so great care must be taken should you decide to reorganize the directory
structure of your assets.

TACTIC Developer

7

The TACTIC Script Editor

The TACTIC Script Editor allows for Javascript and Python based scripts to be written and stored in a "custom
script" sObject. These scripts harness the power of Javascript in the web browser along with the power of the Python
TACTIC Client API. They can be structured to run on a general execution, by a trigger or, they can be attached to
a button to execute for a specific sObject.

One of the main benefits with using this method of custom scripting in TACTIC is that the script writer does not
have to have direct access to the server's file system.

Outputting to the Debug_Log Table With The
TacticServerStub.log() Function

The TacticServerStub.log() method writes to the table named 'debug_log' in the sthpw database.

The first parameter of the TacticServerStub.log() method is named level. The argument for level can be one of the
following keywords:

level critical | error | warning | info | debug - arbitrary debug level category

The TacticServerStub.log() method can be used as follows:

var server = TacticServerStub.get()
server.log('debug','My log message for the debug group.')

The debug level argument provides the convenience of grouping the Debug Log table by debug levels. This table
can be found under:

Admin Views -> Server -> Debug Log

TACTIC Developer

8

Note

These 5 debug levels are arbitrary.

The only purpose the levels serve are to group the messages when they are sorted in the table.

Outputting to the TACTIC Web Client Output Log With The log
Methods

While writing scripts in the TACTIC Script Editor, messages can be output to the Web Client Output Log.

Below are the 5 Javascript methods in use. The most vocal method, log.critical(), is at the top:

Below is the Output Log console from above the sample script. It can be found under:

Main Gear menu -> Tools -> Web Client Output Log.

TACTIC Developer

9

The level of the log messages which appear in the Javascript Output Client Log can be controlled. The level can be
adjusted under: My Admin -> User Preferences.

Below is a table to illustrate what the setting for each level will display

critical setting only display messages that are from log.critical()

error setting only display messages that are from log.critical() or log.error()

warning setting only display messages that are from log.critical() or log.error() or log.warning()

info setting only display messages that are from log.critical() or log.error() or log.warning() or log.info()

debug setting only display messages that are from log.critical() or log.error() or log.warning() or log.info() or
log.debug()

For example, if the Web Client Logging Level is set in the preferences to the warning level, we will only see messages
that are from log.warning(), log.error() and log.critical(). ie. Only messages at the same level or above that level will
be displayed in the Web Client Output Log.

TACTIC Developer

10

Client API JavaScript Samples

Example 1: Insert A New sObject

// INSERT A NEW SOBJECT

var server = TacticServerStub.get();

var code = "truck";
var asset_name = "truck";
var description = "A model of a truck.";
var search_type = "toy_factory/lego_set";
var project = "toy_factory";
var data = {
 'code': code,
 'name': asset_name,
 'description': description
};

var search_key = server.build_search_key(search_type, code, project);
var result = server.insert(search_type, data);
log.debug(result);

Results after insert:

Example 2: Get An sObject by Its Search Key

// GET BY SEARCH_KEY
var server = TacticServerStub.get();

var search_type = "toyrus/lego_set";
var code = "model_crane";
var project = "toyrus";

TACTIC Developer

11

var search_key = server.build_search_key(search_type, code, project);
var result = server.get_by_search_key(search_key);
alert(result.description);
server.log("debug", result);

Results after get_by_search_key():

Example 3: Update An Existing sObject

// UPDATE EXISTING SOBJECT

var server = TacticServerStub.get();

var code = "model_crane";
var project = "toyrus";
var asset_name = "model crane";
var description = "Revised description of a crane.";
var search_type = "toyrus/lego_set";
var data = {
 'code': code,
 'name': asset_name,
 'description': description
};
var search_key = server.build_search_key(search_type, code, project);
var result = server.update(search_key, data);
server.log("debug", result);

Results after update:

Example 4: Retire An Existing sObject

// RETIRE AN EXISTING OBJECT

var server = TacticServerStub.get();

var search_type = "toyrus/lego_set";
var code = "model_crane";
var project = "toyrus";

var search_key = server.build_search_key(search_type, code, project);
var results = server.retire_sobject(search_key);
server.log("debug", result);

Results after retire:

TACTIC Developer

12

Client API

Client API Setup

Important Note

Visit the Southpaw support site for more examples and tutorials on the API and its usage. The Support site is the
place to go for wikis, forums, examples, and more.

Setup

The easiest way to interact with the server from the client using the Client API is to use the provided server stub
code. This code includes a class and a utility that are very useful for handling many of the details around client/server
interaction and authentication.

The server stub code is housed in a client folder and can be found in the TACTIC installation in the directory:

<tactic_install_dir>/src/client

The first step is to copy the entire client folder over to the client machine (the machine that will be running the scripts)
to a directory that will be visible to the user. Most facilities would likely put this folder in a centralized location so that
every computer would be able to execute its scripts. The path to this folder must be specified in the PYTHONPATH
environment variable on client machines so that it can be found by the scripts. For instance, if PYTHONPATH =
L:/custom_python. you would put the client folder in L:/custom_python. Please refer to the Python documentation
for more information.

Settings

There are three important parameters for setting up the TacticServerStub to connect correctly :

• server: specifies the server that the server stub will connect to. This server can be a domain name ("localhost")
or an IP address ("127.0.0.1"). It can even be a port number ("localhost:9000"). This setting allows you to switch
between various TACTIC servers in your facility.

• project: specifies the current project. In TACTIC, the project is a state under which interactions occur.

• ticket: specifies the authentication ticket, a long alpha-numeric string that encrypts the login and password so that
these values remain secure.

There are a number of methods to set these parameters.

The first method is to set the following parameters directly in the server stub reference:

server = TacticServerStub()
server.set_server(tactic_server)
server.set_project(project)
this is not needed if you have run python get_ticket.py
server.set_ticket(ticket)

These settings override all settings obtained elsewhere. This method ensures that these values are set up correctly
based on some external information.

To set up a server stub, you can insert the stub information in your script (described in the client API documentation
as part of the get_ticket() function). Or, you can run the script get_ticket.py, which is included with the client API
example set (located in <TACTIC_INSTALL_DIR>/src/client/bin). When the stub is run, it creates a ticket file on
the user's machine which will be used each time any API script is run to authenticate which user is running the script.

TACTIC Developer

13

The second method is through environment variables set up across the studio:

• TACTIC_SERVER: sets the server that the server stub will connect to.

• TACTIC_PROJECT: sets the project that the server stub will connect to.

• TACTIC_TICKET: sets the authentication ticket.

This method can be used by programs that set up user environments, and has other advantages. It is easy to switch
the settings using a shell variable. The program that sets up the environment does not have to be written in Python.
It can even be simple to set up by using a shell command line to set the environment variables.

The third method makes use of a resource file located in the user's home directory. This resource file has a simple
format:

login=joe
server=localhost
ticket=97d2bec3d73da71c14fb724a47af5053
project=bar

The login tag doesn't actually do anything here, since the user name is encapsulated in the ticket itself.

The fourth method is described below:

Alternative way of using TacticServerStub without a ticket file

Alternative way of using TacticServerStub without a ticket file

If you have written a GUI or have some means of retrieving the user's password on individual session instead, you
can use the following construct to set the ticket. The server's IP and project should be set beforehand.

 server = TacticServerStub.get()
 server_IP = '10.10.50.100'
 my.set_server(server_IP)
 my.set_project('sample3d')

 ticket = my.get_ticket(login, password)
 my.set_ticket(ticket)

Once you have set up the environment for the client API to run correctly, you can try a sample script. The following
simple script illustrates the structure of a TACTIC Client API program:

import sys
from tactic_client_lib import TacticServerStub

def main(args):
 server = TacticServerStub()
 server.start("Ping Test")
 try:
 print server.ping()
 except:
 server.abort()
 raise
 else:
 server.finish()

if __name__ == '__main__':
 executable = sys.argv[0]
 args = sys.argv[1:]
 main(args)

TACTIC Developer

14

This simple program will ping the server and return "OK". If everything is set up correctly, you should be able to
run this program from a shell as follows:

python ping.py
OK

If you see "OK", then you have successfully connected to the TACTIC server using the client API.

If you need to run python get_ticket.py first, it can be found under: client/bin/get_ticket.py.

TACTIC Developer

15

Client API Structure

Directory Structure

The client API files are located in the directory <tactic_install_dir>/src/client. This directory contains all the files need
for the client API. Typically you would copy all of the files in this directory to a location visible to the client machine.

There are a number of directories in this Client API directory:

• bin: contains useful supported scripts.

• test: contains unit tests for the client API.

• examples: contains a number of small examples to be used for reference.

• tactic_client_lib: the main directory for the Client API.

The main directory "tactic_client_lib" is the base module that you will use to access all of the TACTIC client APIs.
Typically, you would import this module when working with the client API:

from tactic_client_lib import TacticServerStub

There are a number of subdirectories under tactic_client_lib:

• tactic_server_stub.py: contains the main server class "TacticServerStub". This class encapsulates all interactions
to the TACTIC server and is generally the primary class used with the client API.

• (ALPHA) application: contains all the classes that deal with interaction with third-party applications. It provides
an abstraction layer for applications and allows you to set data that can be used by TACTIC's introspection
(verification).

• common: contains a number of convenience functions that are commonly used.

• interpreter: contains the client-side pipeline interpreter. This interpreter executes pipelines defined on the
TACTIC server. These pipelines can be used to create highly complex modular client-side processes. Typical uses
are for the checkin and checkout pipelines.

• test: contains a number of test classes used by the unit tests.

You should point to the Client API by having the directory src/client/tactic_client_lib stored somewhere accessible
to client machines. Import the Tactic_Server_Stub with the following line in your script from tactic_client_lib:

import Tactic_Server_Stub

(For more details, visit the Southpaw Support site.)

tactic_server_stub.py

This module contains the TacticServerStub class, which encapsulates all interactions with the TACTIC server. This
class lets you make full use of the TACTIC architecture in your custom applications. Although the TacticServerStub
can be instantiated, it is often preferable to use it as a singleton so you can set up the server once and make use of
it from various locations in your applications:

from tactic_client_lib import TacticServerStub
server = TacticServerStub.get()

Once you have a reference to the TacticServerStub, you must set it up using three essential parameters: server, ticket,
project. These parameters are described in more detail in the client API setup documentation.

TACTIC Developer

16

interpreter

This directory contains all the code needed to execute pipelines on the client. Pipelines in TACTIC are arbitrary
process flow graphs. These pipelines have a number of advantages over other methods:

• They promote reusability, with each process handler having a consistent interface from which it can extract
information. Typically, handlers are like mini programs which for the most part are compartmentalized and have
little to do with each other.

• They can be visualized. Using the pipeline editor, the entire flow of the pipeline can be graphically visualized

• They can be specialized. Each aspect of the pipeline can be written by those team members most suited for the task.

• They lower the bar to creating complex pipelines. With a large library of well-written handlers, it becomes possible
for non-developers to create pipelines by graphically piecing processes together.

application

This directory handles all of TACTIC's interaction with third-party applications.

NOTE: this section is still in active development.

TACTIC Developer

17

Basic Operations in Python and Javascript

Note

If you havenn't done so, please review the Client API Setup doc.

Simple Ping

The following is a skeleton script interacting with the Client API:

from tactic_client_lib import TacticServerStub

def main():
 server = TacticServerStub()
 server.start("Ping Test")
 try:
 print server.ping()
 except:
 server.abort()
 raise
 else:
 server.finish()

if __name__ == '__main__':
 main()

Executing this script will give the following output:

$ python examples/ping.py
OK

If you haven't had a ticket in the user directory, please run python get_ticket.py. Otherwise, you will get an error
like this:

 File "G:\TSI\3.0_client\client\tactic_client_lib\tactic_server_stub.py",
 line 2789, in _setup raise TacticApiException(msg)
 tactic_client_lib.tactic_server_stub.TacticApiException:
 [C:/sthpw/etc/<someuser>.tacticrc] does not exist yet. There is not enough
 information to authenticate the server. Either set the appropriate environment
 variables or run get_ticket.py

The first line imports the TacticServerStub class. This class is a stub to the server and relays function calls between
the TACTIC server and the client API code. It handles all the details of how to connect to the server. It also maintains
status information, including the current project and whether or not the session is authenticated.

All client API scripts should run within a transaction. This requirement is achieved using server.start("Ping Test"),
which initiates a new transaction on the server. All subsequent server interactions are grouped in the same transaction
until server.finish() is executed. The function server.abort() is used to abort the transaction should any error occur
in the body of the code.

Querying data

The most fundamental operation in the Client API is the query function, which enables access to direct information
on an SObject

The following example illustrates the use of the query function:

 # define the search type we are searching for

TACTIC Developer

18

 search_type = "prod/asset"

 # define a filter
 filters = []
 filters.append(("asset_library", "set"))

 # do the query
 assets = my.server.query(search_type, filters)

 print "found [%d] assets" % len(assets)

 # go through the asset and print the code
 for asset in assets:
 code = asset.get("code")
 print(code)

Executing this example will give the following output:

$ python examples/query.py
found [3] assets
chr001
chr002
chr003

In this example, a search_type is first defined. This search type is a uniquely named identifier for a class of SObjects.

A list of filters is next defined. These filters allow you to narrow the search to specific SObjects. In this example,
only assets of the asset_library = "set" will be found.

Next, the assets are retrieved using the query() function, which returns a list where each element is a serialized
dictionary of an SObject. In this example, the code for each asset is retrieved and printed.

Filters are very important in the query function because they narrow down searches to find the specific SObjects you
are looking for. The filters are very flexible and support a wide range of different modes. A sample of the supported
modes is shown below:

 # simple search filter
 filters = []
 filters.append(("name_first", "Joe"))
 results = my.server.query(search_type, filters, columns)

 # search with 'and': where name_first = 'Joe' and name_last = 'Smoe'
 filters = []
 filters.append(("name_first", "Joe"))
 filters.append(("name_last", "Smoe"))
 results = my.server.query(search_type, filters, columns)

 # search with 'or': where code in ('joe','mary')
 filters = []
 filters.append(("code", ("jo e", "mary")))
 results = my.server.query(search_type, filters, columns)

 # search with 'or': where code in ('joe','mary') order by code
 filters = []
 filters.append(("code", ("joe", "mary")))
 order_bys = ['name_first']
 results = my.server.query(search_type, filters, columns, order_bys)

 # search with like: where code like 'j%'
 filters = []
 filters.append(("code", "like", "j%"))

TACTIC Developer

19

 results = my.server.query(search_type, filters, columns)

 # search with regular expression: code ~ 'ma'
 filters = []
 filters.append(("code", "~", "ma"))
 results = my.server.query(search_type, filters, columns)

 # search with regular expression: code !~ 'ma'
 filters = []
 filters.append(("code", "!~", "ma"))

Insert and Update

It is essential to insert SObjects and update their values.

The following code creates a new asset in the database.

 # define a search type for which to add a new entry
 search_type = 'prod/asset'

 # build a data structure which is used as data for the new sobject
 data = {
 'code': 'chr001',
 'name': 'Bob',
 'description': 'The Bob Character'
 }

 server.insert(search_type, data)

The following code snippet updates an existing asset in the database:

 # define the search key we are searching for
 search_type = "prod/asset"
 code = 'vehicle001'
 search_key = server.build_search_key(search_type, code)

 # build a dataset of updated data
 data = {
 'description': 'This is a new description'
 }
 # do the update
 asset = my.server.update(search_key, data)

 print asset.get("description")

Note that the search key is used to identify the precise sObject being updated. This search key uniquely identifies an
sObject in TACTIC. With this search key, TACTIC is able to precisely update the specified sObject.

Javascript Client API

The TACTIC Client API can be accessed in Javascript as well as Python. One can deduce its usage from the Python
Client API doc. One main point to notice is that the keyparams in the Client API doc, also known as keyword
argumnets, should be expressed as a hash {} in javascript. Here are some examples:

1. Using the eval() function, we want to find all the anim snapshots checked in with the asset chr001.

var server = TacticServerStub.get();
var exp = "@SOBJECT(sthpw/snapshot['context','anim'])";
var result = server.eval(exp,{search_keys:['prod/asset?project=sample3d&code=chr001']});
log.critical(result);

2. Display the notes written for the selected assets in the UI.

TACTIC Developer

20

var server = TacticServerStub.get()
var search_keys = spt.table.get_selected_search_keys();
var exp = "@SOBJECT(sthpw/note)";
if (search_keys.length > 0){
 var result = server.eval(exp, {search_keys: search_keys});
 log.critical(result);
}

3. Display only the task code in anim or lgt process with description containing the word fire, not specific to any
particular asset.

var server = TacticServerStub.get();
var exp = "@GET(sthpw/task['process', 'in', 'anim|lgt']['description','EQ','fire'].code)";
var result = server.eval(exp);
log.critical(result);

4. To insert a note for an asset chr001 under the model process and context.

var server = TacticServerStub.get();
var sk = server.build_search_key('prod/asset','chr001');
server.insert('sthpw/note', {'note': 'A test note', process: 'model', context: 'model', login:
 'admin'},
{parent_key: sk});

5. To get the latest snapshot of the asset chr001 for the current project

var server = TacticServerStub.get();
var sk = server.build_search_key('prod/asset','chr001');
var snapshot = server.get_snapshot(sk, {context:'anim', include_paths_dict: true, versionless:
 false});
log.critical(snapshot);

6. To run a query of snapshots using filters and limit keyword argumnets

var server = TacticServerStub.get();
var filters = [];
// use built-in expression operator EQ, NEQ, EQI, or NEQI to specify the search_type has to
 contain prod/shot
filters.push(['search_type', 'EQ','prod/shot']);
filters.push(['project_code','sample3d']);
var snapshot = server.query_snapshots({filters: filters, limit: 5});
log.critical(snapshot);

TACTIC Developer

21

Checkin / Checkout Operations

Checking files in

The Client API has access to the full range of TACTIC's asset management system.

Any sObject can become a "container" for check-ins. This has the advantage that you can use this one SObject
(container) to check in files using the deep set of check-in tools provided by TACTIC. The rest of this section describes
the different types of check-ins available.

Simple Checkin

The simple_checkin() function allows you to check in a single file.

 file_path = "./test/miso_ramen.jpg"

 # now check in the file
 search_type = "unittest/person"
 code = "joe"
 context = "test_checkin"
 search_key = my.server.build_search_key(search_type, code)

 # simple check-in of a file. No dependencies
 desc = 'A Simple Checkin'
 snapshot = my.server.simple_checkin(search_key, context, file_path, description=desc,
 mode="upload")
 print snapshot.get('snapshot')

The simple_checkin is the most basic type of check-in. It creates a snapshot and then checks a file into that snapshot.
The newly created snapshot is returned.

<snapshot>
 <file name="miso_ramen_v001.jpg" type='main' code='123BAR'/>
</snapshot>

The exact file name that is checked in will vary depending on the specific implemented naming conventions

Group (or Sequence) Checkin

The group_checkin() function allows you to check in a sequence of files, defined by a frame range:

<start>-<end>/<by>

For example, a frame range of 1 to 10 is descibed as "1-10". Or every second frame from frame 20 to frame 50 can
be described as "20-50/2".

TACTIC provides two notations to describe the file names of a range of frames. This special notation, in conjunction
with the frame range, can generate a sequence of files. The two notations are as follows:

• <base>.####.<ext>

• <base>.%0.4d.<ext>

Here is a code example of checking in a sequence of files:

 pattern = "./test/miso_ramen.%0.4d.tif"
 file_range = '1-24'
 context = 'beauty '

 # build the search key
 search_type = "unittest/person"

TACTIC Developer

22

 code = "joe"
 search_key = my.server.build_search_key(search_type, code)

 # simple checkin of a file
 desc = 'A Checkin of a group of files'
 context = "test_checkin"
 snapshot = server.group_checkin(search_key, context, file_pattern, file_range)
 print snapshot.get('snapshot')

When executed, this example will check in a sequence of 24 files starting from 1 to 24. It should be noted that this
method will by default expect that the files have been uploaded to the server. For this reason, it is often recommended
to use preallocated check-ins for both sequence and directory check-ins.

Directory Checkin

As the name suggests, a directory check-in enables an entire directory and all of its subdirectories to be checked
in. TACTIC does not keep track of the contents of the checked-in directory. This allows you to check in complex
directory structures without having to inform TACTIC of all of the details of the contents. This might be the best
approach when all the details of the directory are already handled by some other system so it is not necessary for
TACTIC to track things.

Here is a code example of checking in a directory:

 file_path = "./test/XG002/beauty"

 # build the search key
 search_type = "unittest/person"
 code = "joe"
 search_key = my.server.build_search_key(search_type, code)
 context = "test_checkin"

 # simple check-in of a file.
 desc = 'A Simple Checkin'
 snapshot = my.server.directory_checkin(search_key, context, file_path, description=desc)
 print snapshot.get('snapshot')

Note that this code is very similar to single file check-ins (simple_checkin()), because TACTIC treats a directory
check-in in a similar manner to a file check-in. It uses the leaf directory as the file name. It is important to consider
naming conventions, because this leaf directory will be handled using file naming conventions even though it is a
directory.

As with group_checkin(), this method already expects the files to have been uploaded to the server in the appropriate
place. There are various modes that can be used to alter the manner in which the files get to the server repository.
For details, see the "modes" section below.

Piecewise check-ins

TACTIC allows you to build up a check-in piecewise or stages. This is a powerful feature because you can build a
check-in over the course of many operations (and many transactions if desired) and the whole set of operations will
be treated as a single versioned entity. The TACTIC snapshot definition allows for the entry of multiple files into a
single check-in. Typically, the process begins by creating a new "empty" snapshot. This snapshot is a placeholder
which reserves a version and context for a particular set of future operations. Once this empty snapshot is created,
you can start adding files and dependencies to it.

The following example checks in a Maya file and a corresponding OBJ file.

 maya_path = "./test/chr001/chr001_model.ma"
 obj_path = "./test/chr001/chr001_mode.obj"

 # build the search key

TACTIC Developer

23

 search_type = "unittest/person"
 code = "joe"
 context = "test_checkin"
 search_key = my.server.build_search_key(search_type, code)

 # create an empty snapshot
 desc = 'A Piecewise Checkin'
 snapshot = my.server.create_snapshot(search_key, context, description=desc)
 print "empty"
 print snapshot.get('snapshot')

 snapshot_code = snapshot.get('code')
 snapshot = my.server.add_file(snapshot_code, maya_path, file_type='maya')
 snapshot = my.server.add_file(snapshot_code, obj_path, file_type='obj')
 print
 print "two files"
 print snapshot.get('snapshot')

Executing this code will result in the following:

empty
<snapshot/>

two files
<snapshot>
 <file name='chr001_model_v001.ma' file_code='1044BAR' type='maya'/>
 <file name='chr001_model_v001.obj' file_code='1045BAR' type='obj'/>
</snapshot>

First, an empty snapshot is created using create_snapshot(), then files are added to this snapshot one by one. Note
that the type here is explicitly specified. This type differentiates one file in a snapshot from another.

It is also possible to add a sequence of files or even a directory to a snapshot:

 pattern = "./test/miso_ramen.%0.4d.tif"
 file_range = '1-24'
 snapshot = server.add_group(snapshot_code, file_pattern, file_range, file_type='sequence')
 print snapshot.get('snapshot')

 directory = "./test/test_directory"
 snapshot = server.add_directory(snapshot_code, directory, file_type='directory')
 print snapshot.get('code')

Executing the last code snippet will give the following results:

<snapshot>
 <file name="mise_ramen.%0.4d.tif" file_code='1047BAR' type='sequence'/>
</snapshot>

<snapshot>
 <file name="mise_ramen.%0.4d.tif" file_code='1047BAR' type='sequence'/>
 <file name="test_directory" file_code='1047BAR' type='directory'/>
</snapshot>

Checkin Modes

There are various modes that you can use to check in files. These modes determine how a file will be transferred
to the repository.

• upload: Uploads the files to a temporary directory

• copy: Copies the files to the handoff directory

• move: Moves the files to the handoff directory.

TACTIC Developer

24

The previous simple_checkin() example uses the "upload" mode. This means that the client will connect to the server
and use an HTTP connection to upload the file to the server where it will be subsequently checked in. HTTP does
not require any additional setup and it may be the only choice available for facilities having only WAN access to
the TACTIC server. However, HTTP is a very slow transport protocol so, if possible, it is better and faster to use
other available modes.

The copy and move modes use a "handoff" directory, which is an intermediate directory that is visible on the network
to both the client machine and the TACTIC server. When the check-in is executed, the files are first copied or
moved to this handoff directory. The TACTIC server is then notified and grabs the files and puts them into the
repository, renaming as the naming conventions stipulate. The files are always "moved" from the handoff directory
to the repository. The advantage of using these modes over the "upload" mode is that they go through NFS or CIFS.
These modes make use of the fast networks and huge file servers that are available in typical media and production
facilities.

The copy and modes require a bit of setup because the server and the client must be able to see the handoff directory.
You need to configure the TACTIC server configuration file, located in <site_dir>/config/tactic_<os>-conf.xml. This
file contains the following relevant settings:

• win32_client_handoff_dir: the handoff directory as seen from a Windows client

• linux_client_handoff_dir: the handoff directory as seen from a Linux client

• win32_server_handoff_dir: the handoff directory as seen from a Windows TACTIC server

• linux_server_handoff_dir: the handoff directory as seen from a Linux server

Note that the win32 settings apply to all flavors of Windows, including Windows 64-bit machines. The Linux settings
apply to all POSIX machines including Debian base operating systems and Mac OS X.

After you set the configuration, you can then use the copy or move modes to take advantage of the handoff directory:

 # simple check-in of a file using move mode
 desc = 'A Simple Checkin'
 snapshot = my.server.simple_checkin(search_key, context, file_path, description=desc,
 mode="move")
 print snapshot.get('snapshot')

Note that the only difference in this example from earlier check-in examples is that the mode parameter is set to
"move".

Preallocated check-in (mode="preallocate")

Preallocated check-ins are the most efficient check-ins. Bandwidth and storage space are expensive commodities in
a typical media or production facility, so there is a definite cost and time benefit to reducing their use as much as
possible.

Preallocated check-ins enable a client process to be checked directly into the repository. They are recommended for
check-ins that are very heavy in either bandwidth or disk usage and are designed to minimize both. Some production
processes that would benefit from using this check-in mode include rendering frames, ingesting plates, simulating
data, and so on.

The following steps describe the process for preallocating check-ins:

1. Create an empty snapshot to reserve a check-in version and context.

2. Ask for a path in the repository from the TACTIC server.

3. Create the files directly in the path given by the TACTIC server.

TACTIC Developer

25

4. Inform TACTIC that the files have been placed in the appropriate location.

The path supplied by TACTIC in the preallocation is located directly in the repository. The process generating the
files can thus save the files directly to the correct location in the repository (following all the predefined naming
conventions). Files are created directly in the repository with the correct directory and file name as TACTIC would
have checked them in using the other methods. This eliminates later having to copy or move files around the network
unnecessarily, as is typically required by other check-in modes.

Because the simple_checkin(), group_checkin() and directory_checkin() functions perform the entire check-in
process in one step, you cannot use them for preallocated check-ins. Instead, you would use a piecewise check-in to
build up the checked in parts. The following is an example of a preallocated check-in using a piecewise approach:

 search_type = "prod/render"
 code = "XG002_beauty"
 search_key = my.server.build_search_key(search_type, code)

 # create an empty snapshot
 desc = 'A Preallocated Checkin'
 context = "render"
 snapshot = my.server.create_snapshot(search_key, context, description=desc)

 # get the preallocated path
 snapshot_code = snapshot.get('code')
 file_pattern = snapshot.get_preallocated_path(snapshot_code, file_type="main")
 print "file_pattern: ", file_path

 # generate the files
 for i in range(1, 20):
 file_path = file_pattern % i
 render_file(file_path)

 # add the files to the snapshot
 snapshot = server.add_group(snapshot_code, file_type="main", file_range="1-20",
 mode="preallocate")
 print snapshot.get("snapshot")

Executing the above code would result in output something like:

file_pattern: XG002_beauty_v012.%0.4d.tif
<snapshot>
 <file name="XG002_beauty_v012.%0.4d.tif" file_code="123BAR" type="main"/>
</snapshot>

The file pattern returned is completely dependent on naming conventions. In this case, the search_type would have
had to define a naming convention whereby the context of "render" produces the above file pattern. For example,
the file naming convention code could include:

def prod_render(my):
 render = my.sobject
 ext = my.get_file_ext()

 parts = []
 parts.append(render.get_value('code'))
 parts.append("v%0.3d" % my.snapshot.get_value("version"))

 file_name = "_".join(parts) + ".%0.4d" + ext
 return file_name

(See the naming convention documentation for more information on how to set up naming conventions.)

It should be noted that the function get_preallocated_path() returns a full path, including the filename as specified
by the naming conventions. Ideally, TACTIC must be able to generate the correct path that can be used to save the
files (as in the example above).

TACTIC Developer

26

There is enormous advantage to using preallocated check-ins. Files are created directly to the repository, eliminating
all of the unnecessary copying of files around the servers. When groups of files reach the muti-gigabyte or even
terabyte range, it becomes prohibitively expensive to check in files in the traditional manner. Preallocated check-ins
maximize the use of your internal system architecture.

In-Place Checkins

In general, the in-place check-in should be considered as the last resort. In-place check-ins do not make use of the
TACTIC naming conventions, and may be the only option when you are confronted by a legacy directory structure.
Using this check-in method makes the assumption that you will be able to later define logic that will map to a desired
naming convention. As a guideline, naming conventions should be procedural and as simple as possible, so you must
plan carefully before considering in-place check-ins.

TACTIC Developer

27

Snapshot Dependency

Types of dependencies

Snapshots control versioning in TACTIC. When processing a checkin, TACTIC creates a snapshot that contains
an XML description of what was checked in. Snapshots can also be dependent on any number of other snapshots
(through a "ref" tag). Taking advantage of this dependency relationship, you can create complex dependency trees
for complex scenes, with the option of undoing them if required.

There are two types of dependencies:

• hierarchical: The given snapshot contains the referenced snapshot

• input: The given snapshot used or was created from a referenced snapshot (but does not contain the contents of
that snapshot)

Connecting snapshots

Dependencies are connected using the add_dependency_by_code() method, which takes an existing snapshot and
adds the appropriate reference tag to it.

The following example shows how to connect two snapshots:

search_type = "prod/asset"
code = "chr001"
search_key = server.build_search_key(search_type, code)

checkin a model
model_snapshot = server.simple_checkin(search_key, model_path, context="model")
model_snapshot_code = model_snapshot.get('code')

checkin a rig
rig_snapshot = server.simple_checkin(search_key, rig_path, context="rig")
rig_snapshot_code = rig_snapshot.get('code')

add the model dependency to the rig
snapshot = server.add_dependency_by_code(rig_snapshot_code, model_snapshot_code)
print snapshot.get('snapshot')

Executing the above example would output:

<snapshot>
 <file name="chr001_rig_v001.ma" file_code="123BAR" type='main'/>
 <ref context='model' version='3' search_type='prod/asset?project=sample3d' search_id='4'/>
</snapshot>

The ref tag is the reference to another checkin. In this case, the reference can be interpreted as being contained in
the snapshot (that is, this is a hierarchical dependency).

Sometimes, it is not possible to store or retrieve version information for an SObject within a session if a particular
application provides only the filename. It is generally assumed that a filename is unique for each search_type in each
project (this is not strictly enforced, but should be as best practice), so it is possible to reverse-map a filename to a
snapshot. In this case, you can try to add a dependency using the add_dependency() method:

file_path = extract_dependent_path()
snapshot = server.add_dependency(snapshot_code, file_path)

This method will attempt to link the filename with the appropriate snapshot.

TACTIC Developer

28

Input references

As opposed to the previous example of hierarchical references, there is a second type of dependency called an input
reference. Input references are dependencies where a particular snapshot was used to produce another snapshot, but
the resulting snapshot does not contain the contents of the originating snapshot. As an example, a Photoshop file may
be used to generate a texture map, but the texture map does not need to contain the Photoshop file.

Adding an input reference is simply a matter of setting the "type" argument to "input_ref":

source_path = "./test/texture.psd"
image_path = "./test/texture.tif"

check in the photoshop file
source_snapshot = server.simple_checkin(search_key, context="source", file_path=source_path)
source_snapshot_code = source_snapshot.get('code')
source_repo_path = server.get_path_from_snapshot(source_snapshot_code)

checkin the image
image_snapshot = server.simple_checkin(search_key, context="image", file_path=image_path)

add an input dependency
image_snapshot_code = image_snapshot.get('code')
image_snapshot = server.add_dependency(image_snapshot_code, source_repo_path, type="input_ref")
print snapshot.get('snapshot')

The above code would produce output like the following:

<snapshot>
 <file name="texture_image_v001.tif" file_code="123BAR" type='main'/>
 <ref context='source' version='3' search_type='prod/asset?project=sample3d' search_id='4'
 type="input_ref"/>
</snapshot>

By managing dependencies at the time of each checkin, it is possible to build up a dependency tree. Thus each version
of every checkin has its own independent dependency tree.

TACTIC Developer

29

Changes

Search ID to Search Code
A change made in TACTIC 4.0 is the use of search code instead of search id when relating sObjects to their snapshots
(or checkins). Until 4.0, the search id was being used to maintain this relation. Now, if you look at the code column
of a sObject and the search code column of a snapshot checked in to this sObject, you will find that both have the
same value. This tells TACTIC that the snapshot is associated with this sObject.

The reason for this change was merging issues between multiple tables of snapshots. When using search id to merge
between tables, there were many discrepancies which could not have been easily solved. Using search code to merge
tables is a much easier process. There are also other reasons which are not very important.

TACTIC Developer

30

Custom Widgets

Widget Architecture

What are Widgets?

Widgets are drawable entities. They have the ability to draw themselves and also have the ability to contain other
widgets and call on their drawing.

Widget Architecture?

The TACTIC interface is entirely built on top of widget architecture. A widget has a drawing mechanism which
displays the widget. Widgets can contain any number of other widgets and pass information to them.

Certain widgets also make use of configuration xml documents in order to configure how they should be drawn. These
configs are useful because they allow very quick and readable configuration of complex widgets. This document can
also be stored in the database as a way of remembering the state of how to redraw a particular widget. This is widely
used in TACTIC to store various parts of the interface in the database.

Every widget has a display method which completely controls how a widget is displayed. This display is recursive
as each widget will call all of it's children's display method. In this manner, the entire interface is build up.

Widgets derive data to draw from sobjects. Generally a search is performed to retrieve sobjects which are then used
to draw the widget. The widget itself can perform the search or it can recieve sobjects from some external source.

Widget Config

Numerous widgets use configuration xml documents to help them draw their display. These widgets are considered
to be "layout" widgets in that they generally use the configurations to determine what the child widgets are and how
and where they are drawn within the parent layout widget. The widget config is an xml document which describes
the child elements and how they should be display. The format is defined as follows.

<config>
 <VIEW>
 <element name='NAME' OPTION='VALUE'>
 <display class='CLASS_PATH'>
 <KWARG>VALUE</KWARG>
 <KWARG>VALUE</KWARG>
 </dispaly>
 </element>
 <element name='NAME' OPTION='VALUE'>
 <display class='CLASS_PATH'>
 <KWARG>VALUE</KWARG>
 <KWARG>VALUE</KWARG>
 </dispaly>
 </element>
 </VIEW>
</config>

Where capitalized words represent variable entries.

VIEW The name of a view which encompases a particular
configuration. There can be any number of views in a
configuration documentation

OPTION An option defining a state or setting of this element. This
information does not get passed to the element widget

TACTIC Developer

31

VALUE A value or a particular argument or options

CLASS_PATH The fully qualified python path of the widget class

KWARG A kwarg that is passed to the class on construction

A simple example of a configuration is as follows:

<config>
<simple>
 <element name='email'>
 <display class='custom.MyCustomWdg'>
 <title>My Widget</title>
 </display>
 </element>
</simple>
</config>

In this case, the "simple" view defines a single element called "email". This element

The configuration document can contain any number of "views". Each "view" can contain any number of elements.
Inside each element, there are xml snippets which represents an xml serialization of a widget. In the example above:

<display class='custom.MyCustomWdg'>
 <title>My Widget</title>
</display>

translates into python server code as follows:

from custom import MyCustomWdg
widget = MyCustomWdg(title='My Widget')

TACTIC uses this format extensively to serialize widgets to the database. Although any source can be used, the config
is most often defined in the widget config table of a particular project.

There are a couple of layout classes that make heavy use of the widget config.

SideBarWdg:

TableLayoutWdg: this class is the used to display most tabular data in TACTIC. It contains many features to make
the display of tabular data dynamic and flexible. Views can be customized and saved. It is probably the most used
layout class in TACTIC. It makes heavy use of the widget config for its display. It's importance is sufficient to warrent
a section on its own below.

CustomLayoutWdg: this class makes use of a special version of the config. It defines elements, but they are defined
within an html tag, allowing for precise layout of elements using HTML. This allows for very flexible layouts while
still being able make use of TACTIC widgets.

SideBarWdg

The SideBarWdg defines the look of the side bar on the left of the TACTIC interface. The SideBarWdg makes heavy
use of the widget config to determine the contents of the side bar. There are 3 main types of widgets that would be
defined as elements in the SideBarWdg:

• LinkWdg

• FolderWdg (Currently SectionWdg)

• SeparatorWdg

The top level view for the project views can be found in the widget config table with the criteria:

TACTIC Developer

32

• search_type = 'SideBarWdg'

• view = 'project_view'

This will defined a list of elements that appear in the top level of the "Project View". An example would look like
the following:

<config>
 <project_view>
 <element name='summary'/>
 <element name='modeling'/>
 </project_view>
</config>

Although, you could defined the display section here, there are are hierarchical definitions to the elements. If a
definition is not found inline, TACTIC will look at the the database for the specially named "definition" view.

• search_type = 'SideBarWdg'

• view = 'definition'

<config>
 <definition>
 <element name='summary' title='Asset Summary'>
 <display class='LinkWdg'>
 <class_name>tactic.ui.panel.ViewPanelWdg</class_name>
 <search_type>prod/asset</search_type>
 <view>summary</view>
 </display>
 </element>
 <element name='modeling' title='Modelling'>
 <display class='FolderWdg'>
 <view>modeling</view>
 </display>
 </element>
 </definition>
</config>

Both the summary and modeling elements are defined in this special "definition" view"

Since all of the folders at all levels cascade to look at the "definition" view, it is useful to always define defintions of
elements in the "definiton" view. This will allow a consistent definition for all of the "views" in the project view.

The "summary" view is defined as a LinkWdg. This widget takes the information defined in the options and then
displays that class in the main body of the TACTIC interface.

widget = ViewPanelWdg(search_type='prod/asset', view='summary')

As stated ealier, the ViewPanelWdg, combines a SearchWdg with a TableLayoutWdg.

The second element defines a "modeling" folder. Whe a folder is click, it will open up and display another list that
is derived from the "modeling" view.

TableLayoutWdg

This widget is the primary class used in TACTIC to lay out tabular data. It makes heavy use of widget config to
define what to display.

To display the rows and columns of the tabular layout, this widget makes use of the following:

a) rows which are sobjects

TACTIC Developer

33

b) columns which are widgets derived from BaseTableElementWdg.

The table layout widget is able to perform a search base on input criteria. It is also able to receive sobjects through
its set_objects() method.

This widget iterates through each of the sobjects per row.

For each column, the table draws the list of widgets provided by the config. This config is typically defined in in
the database in the widget config table.

Two parameters are typcially used to find a particular widget config.

a) Search Type

b) View

BaseTableElementWdg

BaseTableElementWdg are extensively used in the UI. Each column in a table you see in TACTIC derives from it.
For examples of how to create your own, please refer to the Widget Development section.

TACTIC Developer

34

Custom Layout Editor

What the Custom Layout Editor Provides

The Custom Layout Editor allows you to have complete control over the look and feel of TACTIC using many
of the standard web technologies (HTML, CSS and Javascript). With this tool, you can build your own TACTIC
components (called widgets) that have the ability to interact with one another intelligently, making it easier for you
to design your very own TACTIC interface.

HTML

Custom Layouts enable the laying out of custom widgets using standard HTML.

Element Tag

TACTIC Custom Layout introduces a new html tag <element> which lets TACTIC widgets to be embedded into
HTML.

There are two formats for a TACTIC element: a short form and a long form:

short form:

<element view='forms/my_form'/>

long form:

<element>
 <display class='tactic.ui.panel.CustomLayoutWdg'>
 <view>forms/my_form</view>
 </display>
</element>

This ability to reference other views and elements makes it easy to keep a top level view that draws from other views.

TACTIC Developer

35

For display class names of other widgets, see section on Common Widgets.

Styles

You can create styles for each view in the Styles tab. However, most of the time it will be useful to reference a central
stylesheet for a number of views.

In order to include a top level stylesheet, you can create an empty view with only styles defined and include these
styles into other top level views, just as how you would reference a normal view.

For example, you can create a view called 'common/styles' and add this line to the HTML of a view where you want
the styles to appear.

<element view='common/styles'/>

Behaviors

TACTIC's behavior system makes use of standard JavaScript behaviors with the added functionality of some built-
in classes.

Here are two ways to add an alert behavior to a button class called 'my_button'.

<behavior class=”my_button” event='click_up'>
alert('Hello World');
</behavior>

<behavior class='my_button'>{
'type': 'click_up',
'cbjs_action': "'

alert('Hello World');

"'
}</behavior>

Here are the types of events that the TACTIC behavior system has built-in support for:

click_up | click | wheel | double_click | drag | hover | move | change | blur | mouseover |
 mouseout | keyup | keydown | listen

You can set the behavior class to activate upon the firing of another event using the 'listen' type event.

<behavior class='my_button'>{
'type': 'click_up', 'cbjs_action': "'
spt.named_events.fire_event('my_event_trigger'); "'
}</behavior>

<behavior class='my_class'>{
'type': 'listen',
'event_name': 'my_event_trigger',
'cbjs_action': "'

alert('Hello World');

"'
}</behavior>

When the behavior is applicable to a specific HTML element (eg. click, click_up, mouseover, etc.), you can get
element for which the behavior originated from using the 'bvr.src_el' (Behavior Source Element) tag.

var table = bvr.src_el.getParent('.my_table');
var cells = table.getElements('.my_cells');
cells.setStyle('background', 'red');

TACTIC Developer

36

TACTIC’s powerful framework comes with many API functions that make developing for TACTIC easier. Here are
some common ones.

Show loading popup:

spt.app_busy.show('Saving data...')

Hide loading popup:

spt.app_busy.hide()

Load an element:

spt.panel.load(element_name, class_name, kwargs)

Load an element into a popup:

spt.panel.load_popup(element_name, class_name, kwargs)

Close a popup:

spt.popup.close(popup_element)

Options

The Custom Layout Editor's Options tab incorporates the administrative ability of modifying column, theme, view
and table definitions with the ability of creating these widgets. Various views, themes, columns and tables can be
created in the Custom Layout Editor with the desired content and appearance.

Options of these custom features can be defined in the Options tab, similar to how a predefined column or Column
Manager custom column is modified through the Edit Column Definition window. These options can be set to change
widget appearances, functions and behaviours, often in addition to any options established in the HTML and Python
tabs. Many of the same options provided in the Edit Definition window are available and can be used to customize
created features.

The custom feature options are set through the use of Python in the Options tab. A variety of different examples
written in Python have been shown below. They are structured exactly as they would need to be defined in the Options
tab with all possible subsets to refine a particular option.

Option Tab Examples

 "mode": {
 'description': "Determines whether to draw with widgets or just use the raw data",
 'type': 'SelectWdg',
 'values': 'widget|raw',
 'order': 00,
 'category': 'Required'
 },
 "search_type": {
 'description': "search type that this panels works with",
 'type': 'TextWdg',
 'order': 01,
 'category': 'Required'
 },
 'expression': {
 'description': 'Use an expression to drive the search. The expression must return
 sObjects e.g. @SOBJECT(sthpw/task)',
 'category': 'Display',
 'type': 'TextAreaWdg',
 'order': '01'
 },
 "element_names": {
 'description': "Comma delimited list of elemnent to view",
 'type': 'TextWdg',

TACTIC Developer

37

 'order': 0,
 'category': 'Optional'
 }

Customized options are also available to the user which offer additional flexibility when modifying custom features.
Some examples have been provided below.

Option Tab Custom Option Examples

 {
 'basic_option': 'You can describe your option here',
 'advanced_option': { 'description' : 'You can describe your option here and in type specify
 what type of edit widget is used to display the option.',
 'category': 'Display',
 'type': 'TextWdg'
 }

Images

Images can be checked into TACTIC and used in interface design. In the Files tab, you can check in images using
the Check-in wizard.

Once the file is checked in, you use the web path as the URL of the image.

Python

TACTIC integrates the efficiency of Python in a Custom Layout Editor tab, functioning together seamlessly with
HTML, CSS and JavaScript. As can be seen in the example below, Python works in connection with these other
languages to produce a desired output.

Example

HTML code in Custom Layout Editor HTML tab:

<div class="hello_world">
 Hello World
</div>

CSS code in Custom Layout Editor Styles tab:

.hello_world {
 font-size: 2em;
 padding: 1px;
 border: solid 1px black;
 background: ${background};
}

Python code in Custom Layout Editor Python tab:

background = "#F00"

Custom Layout Editor Test Output:

TACTIC Developer

38

The example demonstrates the use of Python in the creation of a title block. Essentially, the Python coding is only
setting the background color of the title block. However, it can be used for more complicated applications, as in the
Testing Interface section.

The Python tab provides the user with the opportunity to use the Python language in the editor without the restriction
of having to explicitly use embedded Mako, which is another TACTIC feature that is described in the following
section. The dedicated Python tab is an implicit integration of Mako. Both Mako and the Python tab essentially use
Mako templating, while both providing equivalent Python utility and efficiency.

Mako

The custom layout engine embeds the Mako, a powerful templating engine which allows you to embed Python scripts
and logic within HTML. In order to embed Python coding within the HTML, the code must be surrounded by the
special Mako tag: <% {Python Code} %>. Here is a simple example of its usage:

<div>
<%
my_car = 'A ferrari'
%>
</div>
<p>${my_car}</p>

Mako makes passing and accessing of data in TACTIC easy, especially combined with the support of XML by
TACTIC widgets for passing arguments.

The 'kwargs.get' function can be used to get the value of an XML attribute of an element, whether it is an attribute
already supported by the element or an arbitrary one. Here is an example of setting a value for an arbitrary attribute.

HTML code in top level view:

<element>
 <display class='tactic.ui.panel.CustomLayoutWdg'>
 <view>my_forms.photoshoot_form</view>
 <args>Hello</args>
 </display>
</element>

HTML code in a view named 'my_forms.photoshoot_form':

<element>
 <display class='tactic.ui.input.TextInputWdg'>
 <default>${kwargs.get("args")}</default>
 </display>
</element>

For the example above, the text field will be populated with the string 'Hello'.

Most of the time, it will be beneficial to use Mako to pass search keys from one view to another. That's covered in
a bit more detail in the Creating Forms section of this document.

Injecting Widgets

You can inject your custom widgets or TACTIC built-in widgets into your view through the user interface. You can
do it through the gear menu:

TACTIC Developer

39

All these injection options allow you to inject the widget you want directly where your cursor is in the code. All
these injections have the name field in common. The name field allows you to name your widget in case you want
to refer to it later in the code.

Selecting Inject Widget allows you to inject any widget you want. You need to define which widget to inject, you
can select your widget through the dropdown or select classpath and write the class path of a built-in TACTIC widget.
After selecting, a built-in widget, you may have to fill in additional arguments which are required to successfully
run the widget.

Selecting Inject Text Input allows you to inject the text input field widget. You can specify many options like the
width of the input field. The Inject Look Ahead Text Input is similar except there is a look ahead which comes
with the input field.

Similarly, you can inject a table or a calendar where you are given other options to customize them respectively.

TACTIC Developer

40

Adding View to sidebar

You can add the view you have created directly to the sidebar. To do this, click on the gear in the top menu and
select “Add to Side Bar”. This will add this view to the sidebar under the Project Views. By default, It will get named
according to the view name and “/” will be treated as a space. For example, “app/chart” will be named “App Chart”.
You can always rename these views in the sidebar by right clicking on them and selecting “Edit Side Bar”. Now
select the view you want to edit and change the Title field.

Creating URLs

When you startup tactic and go to the main project URL (…/tactic/<project_name>), you are presented with the tactic
homepage of the project. That tactic homepage URL can be changed to show one of your created views. To do this,
open up your view in the custom layout editor, then from the gear menu select “Set as Project Url”. The current view
you have open will be shown when you go the main project URL. You can come back to admin side of tactic by
adding “/admin” to the URL (…/tactic/<project_name>/admin).

You can also turn your view into a custom URL. This means that your view will open when you go to a specific
URL. To do this, open your view in the custom layout editor, then from the gear menu select “Add as Custom Url”.
This will open up a dialog box where you can specify what URL should open up the view. The URL specified there
is showing the URL which is appended to (…/tactic). You can specify which widget to run in the URL in the widget
field. By default, it shows the widget code for the view that was open in the custom layout editor. You can check all
your custom URLs by going to the gear menu and selecting “Show Custom URLs”. This will show all the existing
custom URLs. This is where you can delete existing custom URLs.

Creating Forms

Forms provide an interface for updating TACTIC data. The Custom Layout Editor makes the creation of forms easy
with built-in widgets and functions.

TACTIC Developer

41

TACTIC already has some predefined input widgets that can be used as input fields for forms, and they are referenced
like any other widget.

TextInputWdg

SelectWdg

TextAreaWdg

CalendarInputWdg

ActionButtonWdg

<element name='my_text_input_field'>
 <display class='tactic.ui.input.TextInputWdg'>
 <default>Hello</default>
 <width>100px</width>
 </display>
</element>

You can find more details on the exact XML attributes that are supported by each widget in the Common Widgets
section.

Here are some useful functions for generating forms.

spt.api.get_input_values(div_container)

This gets the values of the all the input fields of a div as an array with the attributes being the names of the element
names.

server.update(search_key, data)

This updates an sobject with data that is passed in as an array.

The search key is a key that uniquely identifies an sobject.

Here is an example of usage of both for updating a TACTIC task through a form.

In this example, the search key of an sobject is passed into the view through a list of keyword arguments, and it is
kept as a hidden input for ease of access. The clicking of the save button activates the behavior for saving the form.

HTML: <div class='spt_form'>
 <input type="hidden" name="spt_search_key" value="${kwargs.get('search_key')}"/>
 <element name='spt_status'>
 <display class='SelectWdg'>
 <values>Assigned|Pending|Approved|Waiting</values>
 <search_key>${kwargs.get("search_key")}</search_key>
 </display>
 </element>

 <input type="button" class="spt_save_button" value="Save >>"/>
</div>

JavaScript:

<behavior class="spt_save_button> {
"type": "click",
"cbjs_action": '''
 //gets the parent of the behavior source element
 var top = bvr.src_el.getParent('.spt_form');

 //gets all the input values

TACTIC Developer

42

 var values = spt.api.get_input_values(top);

 var data = {
 //gets value of element named 'spt_status'
 //sets it as the value of the 'status' column for the task sobject
 status: values.spt_status;
 }

 search_key = values.spt_search_key;
 server.update(search_key, data) '''
}

Testing Interface

You can customize your views to behave during a testing phase. To do this, you can add a condition in your code
to check whether the code is being run in testing mode. You can use the following condition in the python section
of the code:

if kwargs.get("is_test") in [True, 'true']:

This condition will be true if it is testing mode. You can now use this condition to setup your variables correctly. You
can run the view in testing mode by clicking the test button in the top menu.

In addition, these custom views can also be defined to take the form of a specific view type: widget, column, chart,
report or dashboard.

Widget is a free form view type. It is designed to allow your view to be versatile in its presentation in TACTIC. These
widget type views can appear in stand-alone pop-up windows, tab view layouts, forms, tables, text inputs, menus, or
even buttons. An extension of this versatility lies in their ability to be injected into other custom views as well, much
like what was described in the Injecting Widgets section.

Column allows for the customization of a table column. This column is available to be added to any table through the
Column Manager under Plugin Widgets. The ability to modify the aesthetics and data presentation of a column will
allow the user to display the data they want in a specific format. For example, if metadata for a particular asset, such
as an image, needs to be shown in a table, a column can be formatted to list the metadata information through the use
of an embedded table, as shown below. Other formatting techniques, like alternating row colors, can be added as well.

Example

HTML code in HTML Custom Layout tab:

<div>
<%
table = []
table.append("<table cellpadding='4px'>")
i = 0
for name, value in data.items():
 i = i + 1
 if (i % 2 == 0):
 table.append("<tr style='background: #BBB'>")
 else:
 table.append("<tr style='background: #DDD'>")

 table.append("<td style='width: 100px'>%s</td>" % name)
 table.append("<td>%s</td>" % value)
 table.append("</tr>")

table.append("</table>")
table = "".join(table)

TACTIC Developer

43

context.write(table)
%>
</div>

Python code in Custom Layout Python tab:

data = {
 'Frame Size:': "768 x 512",
 'Colorspace:': "yuvj420p",
 'Location:': "C:\...\",
 'File Type:': "MJPEG (Motion JPEG)",
}

Output Column in Table:

Chart, report and dashboard view types present the ability to create customized charts, reports and dashboards that are
easily accessible to users. Custom views can be defined to present data in the form of line charts, budgeting reports
or department specific dashboards that display tables or views that are commonly used by that department.

However, only by specifying the view type do these views become easily accessible to users. For example, by setting
a custom layout view to Chart, in the Examples section under Project Configuration, this custom view will be added
to the list of charts that are already available. By selecting the drop down arrow menu on the created chart icon,
there is an option to "Add to Side Bar". This will add this chart view to the side bar for easy accessibility, under a
defined "Chart" section.

In addition, if a custom theme is created and utilizes sidebar views and associated links in the menu, this new chart
view will be automatically added in the menu of theme.

To begin a custom chart, report or dashboard, going to the Examples section under the Project Configuration is
a good place to establish a base to build one of these customized tools. For example, by selecting Dashboards in
the Examples section, a selection of different sample dashboards will be displayed. If one of the dashboards is of
particular interest, but requires some modification, by going to the arrow drop down menu on the dashboard icon
and selecting "Show Definition", the definition can be copied and pasted in the Custom Layout Editor and modified
to the desired appearance.

Tips and Techniques

Handling None:

The default value for the empty string in Python is the word "None". This does not help very much when you want
to obtain something like the search key of an sobject because if there is no search key, instead of getting an empty
string, you get the string "None". And if you try to pass "None" into an element, an error will likely result.

The way to work around that is to add an "or" at the end of your kwargs.get function.

ie: kwargs.get("search_key") or ""

Embed Elements:

A shortcut for embedding elements into the HTML is by clicking on the gear menu.

TACTIC Developer

44

Similarly, if you would like to inject another view into your current view, you can do so by right clicking on the
view you want to inject.

Element Name as Column of sObject:

If you pass a search key into an element, it automatically takes the element name as the column if you do not specify
one. In the example below, the text input will display the id of the sObject with the given search key.

<element name="id">
 <display class="tactic.ui.input.TextInputWdg">
 <search_key>${search_key}</search_key>
 <width>100px</width>
 </display>
</element>

Custom Widget Basics

Introduction

Although any execution environment can interact with TACTIC by interfacing through the Client API, most often,
users will be interacting with TACTIC through the browser. TACTIC's main interface is the browser. All browsers
come with the Javascript language interpreter built-in and thus any rich interface that integrates with TACTIC will
need to interact with the various components using Javascript.

Three core frameworks in TACTIC work together to create a rich web interface.

• CustomLayoutWdg: provides the ability to create the visual interface by laying out widgets using HTML
templating

• Behaviors: provides a framework to create complex behaviors that is much easier to use than the browsers default
event system.

• Applet: provides the interaction to the client machine to do operations that the browser would otherwise not be
permitted to do

Accessing the server from Javascript

The TACTIC Client API can access server functionality through the TacticServerStub in the same manner as its
Python equivalent. Note the similarities in code structure in the following example:

TACTIC Developer

45

Python code:

server = TacticServerStub.get()
snapshot = server.checkin(search_key, context, path, mode="upload")
print snapshot.get("code")

Javascript code:

var server = TacticServerStub.get();
var snapshot = server.checkin(search_key, context, path, {mode: "upload"});
alert(snapshot.code)

There are a few differences due to the syntax of the two different languages. Keyword arguments are not natively
supported by Javascript. Since some of the functions in the server stub have numerous arguments, it is desirable to
only use those that are needed without having to "fill in" all of the preceding arguments with nulls.

For example, the previous Javascript code would have to read like the above:

server.checkin(search_key, context, path, null, null, null, null, "upload")

In general, a given function will have a few necessary arguments and all "optional" arguments are given in a kwargs
dictionary. Another difference is that the sobjects returned are Javascript "objects" whose members are values from
the database. Attributes can be accessed in two ways:

1. code = snapshot['code']

2. code = snapshot.code

Testing Javascript

The most convenient method to test and implement the Javascript examples is in the TACTIC Script Editor. This can
be convenient accesses by pressing the "9" hot key to bring it up. Alternatively, the TACTIC Script Editor can be
brought up under the gear menu under: Tools -> TACTIC Script Editor.

The CustomLayoutWdg:

This is a simple "Hello World" example.

<html>
 <h1>Hello World</h1>
</html>

The XML document embeds an HTML tag that will be used to layout elements in the application.

TACTIC Developer

46

Example 01: Hello World

The simplest way to view this is to open up the TACTIC Script Editor and input the following code:

var html = "<html><h1>Hello World</h1></html.>";
var kwargs = {
 'html': html
};
spt.panel.load_popup('Hello', 'tactic.ui.panel.CustomLayoutWdg', kwargs);

// NOTE: this should be:
// spt.api.load_popup('Hello', 'tactic.ui.panel.CustomLayoutWdg', kwargs);

This previous code is completely in Javascript, however, layout pages using strings in Javascript rapidly becomes
unwieldy. It is thus preferential to create these layouts using the widget config. This is done by going to the side bar
and going to Project Admin -> Widget Config. This will open up the "widget_config" table. This table is used to
store all custom interface configurations for widgets.

Create a new entry by pressing the [+] button on the right side. Input the following into the config field and for view
input example01.

<config>
<example01>
<html>
 <h1>Hello World</h1>
</html>
</example01>
</config>

This is the full XML document describing the widget config. Note that the HTML is now embedded within that XML
document. This will be important to know later when behaviors and elements are added to the widget.

Finally, in the TACTIC Script Editor, enter the following:

kwargs = {
 view: 'example01'
};
spt.panel.load_popup('Example01', 'tactic.ui.panel.CustomLayoutWdg', kwargs);

The following will appear when you click on "Run" in the TACTIC Script Editor the script above:

TACTIC Developer

47

Example 02: Adding to button with a behavior

Add a new entry to the widget_config table with view = 'example02' and with the following config definition.

<config>
<example02>
<html>
 This is a button:
 <input type='button' class='button1' value='Press Me'/>
</html>
<behavior class='button1'>{
 "type": "click_up",
 "cbjs_action": '''
 alert('Hello World');
 '''
}</behavior>
</example02>
</config>

In this example, an HTML button is added to the HTML layout. By default, a button doesn't do anything when it
is clicked. A behavior has to be added for something to happen. TACTIC behaviors are added to DOM elements
by their class attributes.

When the button is clicked (corresponding to the "click_up" event type), the Javascript in the "cbjs_action" attribute
is executed. This example will alert a "Hello World" message on clicking.

Example 03 – Using form value

The following example will add a text area to the interface as well as extract information from that text area once
the button has been clicked.

<?xml version='1.0' encoding='UTF-8'?>
<!-- This examples displays some html UI and then reacts to it using the TACTIC
 behavior system -->
<config>
<example03>
<html>
<div class='spt_top'>
 <textarea name='description' class='spt_input'></textarea>
 <input type='button' class='spt_button1' value='Press Me'/>
</div>
</html>

<behavior class='spt_button1'>{
 "type": "click_up",
 "cbjs_action": '''
 var top = bvr.src_el.getParent('.spt_top');
 var values = spt.api.Utility.get_input_values(top);
 var description = values.description;
 alert('You entered: ' + description);
 '''
}</behavior>

</example03>
</config>

TACTIC Developer

48

Note that currently, get_input_values() requires that every input element have class='spt_input' attribute. Future
versions may remove this requirement, but currently this is necessary.

Please note that when an API for 2.6/2.7, the following lines will be changed:

The following line:
 var values = spt.api.Utility.get_input_values(top);
will be replace by:
 var values = spt.api.get_input_values(top);

The following line:
var top = bvr.src_el.getParent('.spt_top');
will be replaced by:
var top = spt.api.get_parent(bvr.src_el, ".spt_top");

The behavior definition warrants a closer examination:

<behavior class='spt_button1'>{
 "type": "click_up",
 "cbjs_action": '''
 var top = bvr.src_el.getParent('.spt_top');
 var values = spt.api.Utility.get_input_values(top);
 var description = values.description;
 alert('You entered: ' + description);
 '''
}</behavior>

First, there is an implied bvr object that exists in the namespace of the behavior. This bvr objects contains useful
data for the purposes of executing behaviors. The most important attribute is "bvr.src_el". This element is the source
element that called the event. This element can be used as a starting point to navigate the DOM to search for elements.

var top = bvr.src_el.getParent('.spt_top');

It is common practice to find a top level element of a widget from the source element. This top element is a starting
point from which searches under a DOM hierarchy can be made. By starting from a top element, it is ensured that
the returned values are isolated to that single widget.

The next line gets all of the values of all of the input elements under the top element.

 var values = spt.api.Utility.get_input_values(top);

This returns a dictionary of name/value pairs of all of the input elements underneath the top element.

Example 04 - Adding Expressions

By adding expressions to a report, it becomes very easy to create reports that extract important information and
combine it into a single view.

TACTIC Developer

49

<?xml version='1.0' encoding='UTF-8'?>
<config>
<example04>
<html>
 <h1>My login is [expr]$LOGIN[expr]</h1>
 <table>
 <tr><td>Number of tasks</td><td>[expr]@COUNT(sthpw/task)[/expr]</td></tr>
 <tr><td>Number of checkins</td><td>[expr]@COUNT(sthpw/snapshot)[/expr]</td></tr>
 <tr><td>Number of model checkins</td>
 <td>[expr]@COUNT(sthpw/snapshot['context','model'])[/expr]</td>
 </tr>
 </table>
</html>
</example04>
</config>

Expression can be added into the html code by inserting it between [expr][/expr] tags. The expression will be evaluated
and the result will be replaced into the html. This provides an ability to layout an arbitrary layout in javascript and
then fill in the missing data with expressions. The full power of the TACTIC expression language is available. Please
refer to the expression language reference for more information on the expression language.

Example 05: Mako integration (2.6.0+)

The CustomLayoutWdg can make use of the Mako templating engine to create dynamic content. Mako is a powerful
templating system similar in concept to PHP, but instead uses the Python programming language. The expression
language on its own is quite powerful, but it is still and expression lanaguage and sometimes, it is necessary to have
full programming logic. Mako provides a path to create content that is too complex for the expression alnaguage
to handle alone.

The following example shows a report generated with the help of Mako:

<?xml version='1.0' encoding='UTF-8'?>
<!-- Simple test using mako templating -->
<config>
<example06 include_mako='true'>
<html>
<div>
<![CDATA[
<%
 # get some data
 total = 0
 for ctx in ['model', 'texture', 'rig']:
 num_snapshots = server.eval("@COUNT(sthpw/snapshot['context','%s'])" % ctx)
 context.write("Number of %s checkins: %s
" % (ctx, num_snapshots))
 total += num_snapshots
%>
Total number of tasks: ${total}

]]>
</div>
</html>
</example06>
</config>

Mako is not enabled by default. This must done with with the "include_make" attribute:

<example06 include_mako='true'>

TACTIC Developer

50

All code between <% and %> tags are parsed as python code and executed on the server. In order to write out to the
html, Mako uses the context.write() method. This is important to note because the "context" is a reserved word in
Mako. This can cause a confusing error because context is a common variable name when programming in TACTIC.

context.write("Number of %s checkins: %s
" % (ctx, num_snapshots))

The python code with the python block can still make use of the entire TACTIC Client API through the use of a
builtin variable "server". This also means that expressions can be acccesed here as well:

num_snapshots = server.eval("@COUNT(sthpw/snapshot['context','%s'])" % ctx)

Also note that the entire Mako code is wrapped around an XML CDATA block (<![CDATA[...]]>). This is because
python code very easily breaks XML integrity rules. The CDATA block allows for any special characters to be
entered in the XML document. It is good practice to add the CDATA tags in order to avoid errors later on.

Any variables that are declared in python blocks can be accessed outside of the python blocks using the ${var} syntax.
The following will replace ${total} with the corresponding variable defined in the python block.

Total number of tasks: ${total}

Combining the expression language with Mako Templating provides unlimited flexibility in creating complex reports.

Example 07 - Using a CustomLayoutWdg inside of a
TableLayoutWdg

The CustomLayoutWdg can be used inside of a table element. This makes it easy to create arbiraritly complex table
elements within a standard TACTIC table layout widget. The following displays the number of tasks for the row
sobject.

<config>
<my_view>
<element name='num_tasks'>
 <display class='tactic.ui.panel.CustomLayoutWdg'>
 <html>
 <div class='top'>
 [expr]@COUNT(sthpw/task)[/expr] tasks
 </div>
 </html>
 <behavior>{
 'type': 'load',
 'cbjs_action': '''
 var search_key = bvr.kwargs.search_key;
 alert(search_key)
 '''
 }</behavior>
 </display>
</element>
</my_view>
</config>

This element behaves just like the previous CustomLayoutWdg, however there are a few additions. There is a starting
sobject that corresponds to the table row that is passed in and is used as the starting sobject for all expressions. The
following expression finds the number of tasks for the sobject in question and not all of the tasks in the system.

TACTIC Developer

51

[expr]@COUNT(sthpw/task)[/expr] tasks

Another addition is that callbacks have the search key of the sobject for the row available through the bvr object
passed into the behvaior callback.

var search_key = bvr.kwargs.search_key;

With the search key, it becomes possible to use the client API to change data or checkin files for that specific sobject.

Example - Connecting to the server from Javascript

It is often necessary to be able to interact with the server using Javascript in a behavior callback. This is done using
the Javascript implementation of the TACTIC Client API

The following example illustrates how to interact with the server using the TacticServerStub object. This object is
used to issue commands that will be run on the server such as updating data in the database or checking in files.

First, add any image in "C:/Temp/test.jpg"

<?xml version='1.0' encoding='UTF-8'?>
<config>
<example04>
<html>
<div class='spt_top'>
 <textarea name='description' class='spt_input'></textarea>
 <input type='button' class='spt_button1' value='Press Me'/>
</div>
</html>

<behavior class='spt_button1'>{
 "type": "click_up",
 "cbjs_action": '''
 var top = bvr.src_el.getParent('.spt_top');
 var values = spt.api.Utility.get_input_values(top);
 var description = values.description;

 var applet = spt.Applet.get();
 var paths = applet.open_file_browser("C:/Temp");
 var path = paths[0];

 var search_key = bvr.kwargs.search_key();

 var server = TacticServerStub.get();
 server.checkin(search_key, "icon", path, {description: description});
 '''
}</behavior>

</example04>
</config>

The applet is used to interact with the client machine. It defines a number of useful methods such as listing directories,
moving and copying files, uploading and downloading files. For a complete list of the functionality present in the
applet, please refer to the Applet Reference manual. In this case, the example is using the applet to open up a file
browser so the user can select a file.

TACTIC Developer

52

var applet = spt.Applet.get();
var paths = applet.open_file_browser("C:/Temp");
var path = paths[0];

The search key can be obtained from the behavior. This will be required to check into the correct sobject.

var search_key = bvr.kwargs.search_key();

Once a file path has been selected, the server stub is used to check in the file to the server.

 var server = TacticServerStub.get();
 server.checkin(search_key, "icon", path, {description: description});

Example 10 - Converting to a button

Generally, it is not desirable to show a full interface for the checking directly in the table cell. It is much cleaner to
have a simple publish button that will open up the interface in a pop-up.

Example 11 - Integrating Server Side widgets

Many widgets are defined on the server side. These can be integrated in a custom interface by using the TACTIC
specific <element> tag in the html definition of a CustomLayoutWdg.

<config>
<example11>
<html>
 <h1>This is a list of users</h1>
 <element name='users'/>
</html>
<element name='users'>
 <display class='tactic.ui.panel.TableLayoutWdg'>
 <search_type>sthpw/login</search_type>
 <view>table</view>
 </display>
</element>
</example11>
</config>

Widget Development
As of 2.5, all widgets are derived from BaseRefreshWdg. This refresh widget is a new style widget which has some
added functionality allowing to to be "smart" enough to refresh itself. It also standardizes the interface for passing
construction parameters to the widget. All new style widgets take kwargs (keyword arguments) as argumets to the
constructor

widget = MyWidget(option1=value1, option2=value2)

All new style widgets defined a method called "get_args_keys", which return a dictionary of defined and allowable
arguments:

def get_args_keys(my):
 return {
 "option1": "this is option #1",

TACTIC Developer

53

 "option2": "this is option #2"
 }

TACTIC provides the ability to create your own widgets and integrate them seamlessly into the TACTIC interface.

There are 3 main types of widgets:

Widget: A widget derived from a the base Widget class is a free standing widget that requires no parent widget.

Table Element Widget: An element widget is a widget that needs expected to be put inside a TableLayoutWdg.

Input Widget: An input widget is a widget that requires one or more values to put entered or extracted.

Create your own custom widget

You can create your own custom widgets in Tactic that become completely integrated in the user interface.

All widgets are derived from the base Widget (pyasm.web.Widget) class. This class defines the fundamental
functionality required for all widgets that appear in TACTIC. To create your own widget, you can derive off of this
class.

Hello World

In order to start showing how custom widgets can be created, we will start with the base "Hello World" widget.
Create a folder called "custom" and then create a new file called "hello_world_wdg.py" in this new folder. In the
file add the following lines:

from pyasm web import Widget

class HelloWorldWdg(Widget):
 def get_display(my):
 return "Hello World"

In order for TACTIC to be able to use this class,TACTIC must be able to see this file: this "custom" folder must be
either in the PYTHONPATH or in sys.path of the TACTIC process (you can alternatively, use any class that complies
with Python's module handling.

Note

You can also use the python_path variable in the TACTIC config file to add paths to the sys.path dictionary

In order to view this widget quickly, you can open up the javascript editory and type:

spt.panel.load("custom.hello_world_wdg.HelloWorldWdg");

and press the "Run" button. You should see the following:

TACTIC Developer

54

Note that the title does not change. This is something that the link will do automatically.

Formatting the Widget

We could format the widge a litlle more using some basic HTML widgets.

from pyasm.web import Widget, DivWdg

class HelloWorldWdg2(Widget):
 def get_display(my):
 top = DivWdg()
 top.add_style("font-size: 15px")
 top.add_style("margin: 30px")
 top.add_style("padding: 30px")
 top.add_style("width: 150px")
 top.add_style("text-align: center")
 top.add_style("border: solid 1px black")

 top.add("Hello World")

 return top

Adding this to a file called hello_world_wdg2.py and then in javascript editor, type:

spt.panel.load("custom.hello_world_wdg2.HelloWorldWdg2");

Pressing the "Run" button gives:

HTML

Here we introduce the basic HTML widget DivWdg. The add_style() allows you to add arbitrary CSS styles to the
widget. There are various operations that can be added to HTML widgets that are useful for formatting the layout
of the page. These methods include:

• set_attr(name, value)

• add_style(name, value)

• add_class(css_class)

• add_event(event, js_action)

There are few useful predefined widgets that sit on top of HtmlElement:

TACTIC Developer

55

• DivWdg

• SpanWdg

• Table

These are all based of of HtmlElement which are basic html elements and provide a thin layer above HTML.
 HtmlElement also defines a number of static constructors to address most HTML elements:

• HtmlElement.br()

• HtmlElement.p()

• HtmlElement.br()

These return variations of HtmlElement that represent the different HTML elements. These are useful for laying out
a complex widget. All HTML elements and their properties are accessible from these.

Using other widgets

You can add other predefined widget, for example, the CalendarWdg

from pyasm.web import Widget, DivWdg

from tactic.ui.widget import CalendarWdg

class HelloWorldWdg3(Widget):
 def get_display(my):
 top = DivWdg()
 top.add_style("font-size: 15px")
 top.add_style("margin: 30px")
 top.add_style("padding: 30px")
 top.add_style("width: 200px")
 top.add_style("text-align: center")
 top.add_style("border: solid 1px black")

 top.add("Hello World")

 calendar = CalendarWdg()
 top.add(calendar)

 return top

Adding this to a file called hello_world_wdg3.py and then in javascript editor, type:

spt.panel.load("custom.hello_world_wdg3.HelloWorldWdg3");

Pressing the "Run" button gives:

TACTIC Developer

56

This adds one of the predefined widget "CalendarWdg". Widgets are hierarchical and can be added to other widgets.
Any widget can embed any other widget within it's display. This provides a very flexible archictecure for building
up complex hierarchical widgets.

Create your own table element widget

There is a special class of widgets that are designed to be used in conjuntion with TableLayoutWdg, the primary
widget used for laying out tabular data. These widgets should be derived from BaseTableElementWdg, which extends
the basic Widget class with a number of specific methods.

The TableLayoutWdg uses it's child widgets slightly differently than most widgets. It creates a single widget for each
column and calls the get_display() method repeatedly for each row; each row representing a single sobject. Each
element widgets does have knowledge of all of the sobjects, however, for each row, there will be a current sobject
set. This means that the widgets get_display() method will be called repeatedly for each row. So, instead of operating
on a list of widgets, the table element widget should get the current widget using the "get_current_widget()" method.

The following is a simple example of a table element widget.

from pyasm.web import DivWdg
from tactic.ui.common import BaseTableElementWdg

class MyElementWdg(BaseTableElementWdg):
 def get_display(my):
 sobject = my.get_current_sobject()
 first_name = sobject.get_value("first_name")
 last_name = sobject.get_value("last_name")
 div = DivWdg()
 div.add("%s %s" % (first_name, last_name))
 return div

The class is almost identical to a regular class, except that it is derived from BaseTableElementWdg and that it uses
get_current_sobject() to get the current sobject being drawn. This widget still has access to all of the sobjects in all
of the rows, through get_sobjects(), if this is necessary.

To test this, save the code above in a file called my_element_wdg.py and enter this into the javascript editor:

Note

This only works in 2.6: in 2.5, you have to create the view in the widget config table

TACTIC Developer

57

var config = " \
<config><test> \
<element name='name'> \
 <display class='custom.my_element_wdg.MyElementWdg'/> \
</element> \
</test></config>";

var args = {
 'search_type': 'sthpw/login',
 'view': 'test',
 'config_xml': config,
 'do_search': 'true'
};
spt.panel.load("main_body", "tactic.ui.panel.TableLayoutWdg", args);

Pressing the "Run" button gives:

Your custom table element widget completely integrates within the TACTIC interface. You can add other widgets
by expanding the config definition.

var config = " \
<config><test> \
<element name='preview'/> \
<element name='name'> \
 <display class='custom.my_element_wdg.MyElementWdg'/> \
</element> \
<element name='email'/> \
</test></config>";

var args = {
 'search_type': 'sthpw/login',
 'view': 'test',
 'config_xml': config,
 'do_search': 'true'
};
spt.panel.load("main_body", "tactic.ui.panel.TableLayoutWdg", args);

This adds a preview and an email column (which are predefined for sthpw/login search type) and appear with your
custom widget.

TACTIC Developer

58

TACTIC Developer

59

BaseTableElementWdg

This example describes how to create your own BaseTableElementWdg to execute a server-side command. The user
can type some words in the text field, and then click on the "Action" button. The words will be written as the content
of a file in the /tmp folder of the server. In the tactic config file, tactic_linux-conf.xml, let's say the python_path is '/
home/apache/custom'. You can create a file called custom_wdg.py and __init__.py in it.

Here is the content of__init__.py:

from custom_wdg import *

Here is the content of custom_wdg.py:

__all__ = ['CustomToolElementWdg','CustomCmd']

from tactic.ui.common import BaseTableElementWdg
from tactic.ui.widget import ActionButtonWdg
from pyasm.web import HtmlElement, SpanWdg
from pyasm.widget import TextWdg
from pyasm.command import Command

class CustomToolElementWdg(BaseTableElementWdg):

 def get_display(my):

 top = DivWdg()
 top.add_class('spt_custom_tool_top')
 text = TextWdg('user_input')

 action_button = ActionButtonWdg(title='Action', tip='Write a file in /tmp based on the
 data in the text field')
 action_button.add_behavior({'type':'click_up',
 'cbjs_action': '''var server = TacticServerStub.get();
 try {
 var top = bvr.src_el.getParent(".spt_custom_tool_top");
 var values = spt.api.get_input_values(top, null, false);

 # this path is assumed importable in your Python environment
 server.execute_cmd('custom_wdg.CustomCmd', values);
 }
 catch(e) {
 alert(spt.exception.handler(e));
 }
 '''})

 top.add(SpanWdg('Input:', css='small'))

TACTIC Developer

60

 top.add(text)
 top.add(HtmlElement.br())
 top.add(action_button)

 return top

class CustomCmd(Command):

 def execute(my):
 text = my.kwargs.get('user_input')
 f = open('/tmp/my_file.txt','w')
 f.write(text)
 f.close()

If you click the first "Action" button, a file with "Hello !!!" will be created. On clicking the second "Action" button,
the file content will be replaced with the word "example".

TACTIC Developer

61

Plugins

Plugin Manager interface

Plugin Manager

The plugin Manager View is where you will be managing all your plugins. From this view, you can create a plugin,
fully install a plugin, and modify existing plugins. You can find all your installed plugins in the plugin list at the left
hand side of the view. This shows all the plugins you have installed along with all the built-in plugins which have
come with your TACTIC installation. After selecting a plugin, you have access to:

Plugin Info:

• Name

• Code: This is an important entity

• Version: Imporant when you are planning to use or create multiple versions of a plugin

• Description

Documentation:

• shows all the documentation which has been provided for the plugin from the developer

Manifest file:

• ability to export the manifest.xml

• ability to publish the plugin (more information on this in the documentation on creating a plugin)

• contains technical information about the plugin

• can find more information about this in the documentation about creating a plugin

Files: The files tab shows the raw folder structure and files of the plugin. From here, a number of file operations
can be performed.

TACTIC Developer

62

• Adding files (Uploading)

• Removing files

• Creating folders

• Renaming files

Create a Plugin

What is a technical description of a TACTIC plugin?

A plugin is a self-contained package of files that TACTIC can make use of to extend the base functionality. Virtually
any functionality in TACTIC can be made into a plugin.

A plugin can contain:

• project configuration data

• any database data

• js files

• css files

• documentation

• python files

manifest.xml file

The manifest file is a description of the entries in the database that are owned by the plugin. This allows the plugin
manager to extract the appropriate database entries and commit the .spt files. It contains elements like:

data: a collection of name/value pairs that describe information about the plugin

• code

• description

• version

sobject: describes which sobjects the plugin contains. It's an expression of the form <sobject
search_type=”[search_type]”> with attributes:

• code: the specfic code of the object

• expression: an expression of which all matched sobject will belong to the plugin

• path: the relative .spt file path that all sobjects will be written to

• ignore_columns: a comma seperate list of columns for the plugin exporter to ignore

• There are some special attributes for specific search types. The config/widget_config search type has the attribute:

• view

TACTIC Developer

63

.spt files

.spt files are database files that contain database schema structure and database data. These files enable TACTIC to
read and write database data that is both platform and database independent. This abstractions allows TACTIC plugins
to be used on any supported TACTIC platform. An important design criteria of .spt files are that they are human
readable even when the database entry contains xml or software code. More importantly, they can be easily diff’ed
using standard software tools so that the code produced can show proper diffs using any source code management
system (such as Perforce, SVN or Git). This is essential for collaborative work building plugins to delivery to a 3rd
party.

Creating the Plugin

Once you are in the plugin manager, you can the New button which creates a new plugin outline. Afterwards, you
can start filling in the details like name, type, etc. On creation, a plugin type can be specified. Depending on the
plugin type a number of bootstrap data will be created to support the structure of the plugin. After selecting Create,
the plugin will be created and you will be able to see it in the plugin list.

If you go to the documentation tab, you will find that you are able to create new documentation if the documentation
doesn't exist. This will create a new file, doc.html, which you can edit now.

To add files to the plugin, select the plugin and go to the files tab. Here, you will find many options like the ability
to upload or simply create a new file. The new files that you are uploading or creating are used properly when their
purpose is explained in the manifest.xml file.

After customizing the plugin to your needs, you can now package the plugin to perhaps upload to the community site
so others can use it. Documentation on packaging can be found in this section under Packaging a Plugin.

Best Practices

Widget config tables should not include code or id columns or they must be explicitly set to values that are guaranteed
to be unique on any installation of TACTIC. Otherwise, the plugin should not depend on the value of the code or
id column.

This is also true of “custom_scripts” written in the script editor.

When referring to an sobject, always search by code (not id). When doing this, make sure the code contains a
namespace that will not conflict with any other plugin.

TACTIC Developer

64

Packaging a Plugin

Plugin Directory

A TACTIC plugin package is simply a .zip file containing all the files of a plugin. Plugins are installed in the following
directory:

<TACTIC_DATA_DIR>/plugins

The .zip files are usually stored in:

<TACTIC_DATA_DIR>/dist

Categories of Plugins

Plugins are defined into categories. Due to the flexibility of the plugin architecture, a single plugin can package tools,
columns, and themes in any combination. These categories are only used to organize plugins and can also bootstrap
common functionality that would be packaged into a plugin.

All of these will have most of the view definitions in the Custom Layout Editor. Each individual view can have a
type. See Custom Layout Editor documentation for more information on this.

• project: this defines the structure of the project. It may or may not include a theme, but it is usually possible to use
different themes for a given project provided the theme has been set up correctly.

• theme: a theme defines the look and feel of a project as experienced by end users. A theme should have the
following requirements:

• a means of displaying links as represented by the side bar.

• a means of logging out

• overriding the login page (optional)

• column - This represents a plugin that will be added to columns in a table. These will generally consist of one or
more columns that can be added to a tabular layout.

• tool - A tool is a widget that provides additional functionality to the users. Generally a tool needs to be launched
by a button or a menu item from the sidebar.

TACTIC Developer

65

Publishing the Plugin

To package your created plugin to the tactic data directory, select the plugin and go to the manifest tab. Here, you
can make sure that the plugin is named and versioned appropriately. You now need to make sure that the manifest
you've wrote is exported, exporting saves the manifest data you have there to the manifest.xml file.You can now
select Publish and TACTIC will package all the files and create a .zip file of the plugin folder from the root plugin
folder (ie: <TACTIC_DATA_DIR>/plugins). When a version is published, the folder of the current plugin is taken
and copied to a new folder with the name <PLUGIN_CODE>-<VERSION>. Note that the PLUGIN_CODE can
have “/” to present folders.

Expression Development

Using Expressions in Scripting

Using Expressions in Python - Server code

Expressions can be accessed directly through Python code. The expression language is often very convenient to
quickly perform relatively complex searches quickly and easily.

To access the expressions in Python, you would use the following code:

from pyasm.biz import ExpressionParser
parser = ExpressionParser()
expr = "@GET(prod/shot['code','chr001'].prod/shot_instance.prod/asset.code)"
result = parser.eval(expr)

It is often more convenient just to access it through the Search module:

from pyasm.search import Search
expr = "@GET(prod/shot['code','chr001'].prod/shot_instance.prod/asset.code)"
result = Search.eval(expr)

Using Expressions in Python - Client API code

To access the expressions in the Python Client API, you would use the following code:

server = TacticServerStub.get()
expr = "@GET(prod/shot['code','chr001'].prod/shot_instance.prod/asset.code)"
result = server.eval(expr)

When the expression language returns sobjects, these will be in the form of a dictionary like all other sobjects in
the client API.

Using Expressions in Javascript - Client API code

To access the expressions in the Javascript Client API, you would use the following code:

TACTIC Developer

66

var server = TacticServerStub.get()
expr = "@GET(prod/shot['code','chr001'].prod/shot_instance.prod/asset.code)"
var result = server.eval(expr)

Using Expressions in Widget Config

The main widget to use expressions is "tactic.ui.table.ExpressionElementWdg".

When using the ExpressionElementWdg, the starting point of the expression is automatically the SObject associated
with the row. This allows you to use the shorthand form without having to filter.

<element name='code'>
 <display class='tactic.ui.table.ExpressionElementWdg'>
 <expression>@GET(.code)</expression>
 </display>
</element>

Using Expressions inline in HTML

When using the CustomLayoutWdg, inline expressions are supported using a [expr][/expr] tag formatting.

<div>
 <h2>There are [expr]@COUNT(prod/asset['asset_library', 'chr'])[/expr] Characters</h2>
</div>

Using Expressions in CustomLayoutWdg

The custom layout widget has a special html tag which can have html embedded within it. CustomLayoutWdg
provides the ability to embed expressions within its html definition.

The following demonstrates a widget config using expressions:

 <?xml version='1.0' encoding='UTF-8'?>
<config>
<example>
<html>
 <table>
 <tr><td>[expr]$LOGIN[/expr]</td></tr>
 <tr><td>[expr]{@GET(.code)} : {@GET(.description)}[/expr]</td></tr>
 </table>
</html>
</example>
</config>

Please refere to the CustomLayoutWdg in the Widget Reference documentation for more information on how to use
the CustomLayoutWdg.

TACTIC Developer

67

Validation

Validation Set-up
To limit what a user can enter in a field, you can set up validation for the column. It is particularly useful when the
user is required to type in a text field instead of a selection list. This works on the client side so it activates before
you click on the save button.

Example 1: Ensure the field description of prod/shot starts with the word "Client"

In the edit view of prod/shot, make sure there is an element for description defined with these display options:

 <element name='description'>
 <display class='TextWdg'>
 <validation_js>return value.test(/^Client/)</validation_js>
 <validation_warning>It needs to start with Client</validation_warning>
 </display>
 </element>

If the person types in something, press Enter and it fails the validation, the text field will turn red. You can view
the warning message when the mouse pointer is over the text field. The variable 'value' is assumed to be value the
user types in.

Example 2: Ensure the field description of prod/shot contains the code in the same row. The assumption is that the
user would pick a show code in the previous column before typing in a description.

In the edit view prod/shot, make sure there is an element for description defined with these display options:

 <element name='description'>
 <display class='TextWdg'>
 <validation_script>validate_desc</validation_script>
 <validation_warning>It needs to contain the shot code</validation_warning>
 </display>
 </element>

The script it refers to is a javacript saved in the Script Editor. It has a code equal to 'validate_desc'.

 // value, display_target_el, and bvr are assumed variables
 var row = display_target_el.getParent('.spt_table_tr');
 var td = row.getElement('td[spt_element_name=shot_code]');
 var shot_code = td.getAttribute('spt_input_value');
 var exp = new RegExp(shot_code);
 if (!shot_code) {
 return false;
 }
 if (value.test(exp)) {
 return true;
 }
 else {
 return false;
 }

Like 'value', 'display_target_el' and 'bvr' are assumed variables.. The former represents the html element holding the
value whereas the latter is the behavior object.

TACTIC Developer

68

TACTIC Python Client API Reference

TACTIC Developer

69

__init__
__init__(login=None, setup=True, protocol=None, server=None, project=None, ticket=None, user=None,
password="")

Initialize the TacticServerStub

keyparam:

login - login_code

setup - if set to True, it runs the protocol set

protocol - xmlrpc or local. it defaults to xmlrpc

server - tactic server

project - targeted project

ticket - login ticket key

user - tactic login_code that overrides the login

password - password for login

TACTIC Developer

70

abort
abort(ignore_files=False)

Abort the transaction. This undos all commands that occurred

from the beginning of the transactions

keyparam:

ignore_files: (boolean) - determines if any files moved into the

repository are left as is. This is useful for very long processes

where it is desireable to keep the files in the repository

even on abort.

example:

A full transaction inserting 10 shots. If an error occurs, all 10

inserts will be aborted.

server.start('Start adding shots')
try:
 for i in range(0,10):
 server.insert("prod/shot", { 'code': 'XG%0.3d'%i })
except:
 server.abort()
else:
 server.finish("10 shots added")

TACTIC Developer

71

add_config_element
add_config_element(search_type, view, name, class_name=None, display_options={},
action_class_name=None, action_options={}, element_attrs={},login=None, unique=True,
auto_unique_name=False, auto_unique_view=False)

This method adds an element into a config. It is used by various

UI components to add new widget element to a particular view.

param:

search_type - the search type that this config belongs to

view - the specific view of the search type

name - the name of the element

keyparam:

class_name - the fully qualified class of the display

action_class_name - the fully qualified class of the action

display_options - keyward options in a dictionary to construct the specific display

action_options - keyward options in a dictionary to construct the specific action

element_attrs - element attributes in a dictionary

login - login name if it is for a specific user

unique - add an unique element if True. update the element if False.

auto_unique_name - auto generate a unique element and display view name

auto_unique_view - auto generate a unique display view name

return:

boolean - True

example:

This will add a new element to the "character" view for a 3D asset

search_type = 'prod/asset'
view = 'characters'
class_name = 'tactic.ui.common.SimpleElementWdg'
server.add_config_element(search_type, view, class_name)

This will add a new element named "user" to the "definition" view. It contains detailed display and action nodes

TACTIC Developer

72

data_dict = {} # some data here
search_type = 'prod/asset'
server.add_config_element(search_type, 'definition', 'user', class_name
 = data_dict['class_name'], display_options=data_dict['display_options'],
 element_attrs=data_dict['element_attrs'], unique=True,
 action_class_name=data_dict['action_class_name'], action_options=data_dict['action_options'])

TACTIC Developer

73

add_dependency
add_dependency(snapshot_code, file_path, type='ref')

Append a dependency referent to an existing check - in.

All files are uniquely containe by a particular snapshot. Presently,

this method does a reverse lookup by file name. This assumes that

the filename is unique within the system, so it is not recommended

unless it is known that naming conventions will produce unique

file names for every this particular file. If this is not the

case, it is recommended that add_dependency_by_code() is used.

param:

snapshot_code - the unique code identifier of a snapshot

file_path - the path of the dependent file. This function is able

reverse map the file_path to the appropriate snapshot

keyparam:

type - type of dependency. Values include 'ref' and 'input_ref'

ref = hierarchical reference: ie A contains B

input_ref = input reference: ie: A was used to create B

tag - a tagged keyword can be added to a dependency to categorize

the different dependencies that exist in a snapshot

return:

dictionary - the resulting snapshot

TACTIC Developer

74

add_dependency_by_code
add_dependency_by_code(to_snapshot_code, from_snapshot_code, type='ref')

Append a dependency reference to an existing checkin. This dependency

is used to connect various checkins together creating a separate

dependency tree for each checkin.

param:

to_snapshot_code: the snapshot code which the dependency will be

connected to

from_snapshot_code: the snapshot code which the dependency will be

connected from

type - type of dependency. Values include 'ref' and 'input_ref'

ref = hierarchical reference: ie A contains B

input_ref - input reference: ie: A was used to create B

tag - a tagged keyword can be added to a dependency to categorize

the different dependencies that exist in a snapshot

return:

dictionary - the resulting snapshot

TACTIC Developer

75

add_directory
add_directory(snapshot_code, dir, file_type='main', mode="copy", dir_naming='', file_naming='')

Add a full directory to an already existing checkin.

This informs TACTIC to treat the entire directory as single entity

without regard to the structure of the contents. TACTIC will not

know about the individual files and the directory hierarchy within

the base directory and it it left up to the and external program

to intepret and understand this.

This is often used when logic on the exact file structure exists in

some external source outside of TACTIC and it is deemed to complictaed

to map this into TACTIC's snapshot definition.

param:

snapshot_code - a unique identifier key representing an sobject

dir - the directory that needs to be checked in

keyparam:

file_type - file type is used more as snapshot type here

mode - copy, move, preallocate, manual, inplace

dir_naming - explicitly set a dir_naming expression to use

file_naming - explicitly set a file_naming expression to use

return:

dictionary - snapshot

example:

This will create a new snapshot for a search_key and add a directory using manual mode

dir = 'C:/images'
handoff_dir = my.server.get_handoff_dir()
shutil.copytree('%s/subfolder' %dir, '%s/images/subfolder' %handoff_dir)

snapshot_dict = my.server.create_snapshot(search_key, context='render')
snapshot_code = snapshot_dict.get('code')
my.server.add_directory(snapshot_code, dir, file_type='dir', mode='manual')

TACTIC Developer

76

TACTIC Developer

77

add_file
add_file(snapshot_code, file_path, file_type='main', use_handoff_dir=False, mode=None, create_icon=False)

Add a file to an already existing snapshot. This method is used in

piecewise checkins. A blank snapshot can be created using

create_snapshot(). This method can then be used to successively

add files to the snapshot.

In order to check in the file, the server will need to have access

to these files. There are a number of ways of getting the files

to the server. When using copy or move mode, the files are either

copied or moved to the "handoff_dir". This directory

is an agreed upon directory in which to handoff the files to the

server. This mode is generally used for checking in user files.

For heavy bandwidth checkins, it is recommended to user preallocated

checkins.

param:

snapshot_code - the unique code identifier of a snapshot

file_path - path of the file to add to the snapshot.

Optional: this can also be an array to add multiple files at once.

This has much faster performance that adding one file at a time.

Also, note that in this case, file_types must be an array

of equal size.

keyparam:

file_type - type of the file to be added.

Optional: this can also be an array. See file_path argument

for more information.

use_handoff_dir - DEPRECATED: (use mode arg) use handoff dir to checkin

file. The handoff dir is an agreed upon directory between the

client and server to transfer files.

mode - upload|copy|move|manual|inplace

TACTIC Developer

78

the file to the server.

create_icon - (True|False) determine whether to create an icon for

this appended file. Only 1 icon should be created for each

snapshot.

dir_naming - explicitly set a dir_naming expression to use

file_naming - explicitly set a file_naming expression to use

return:

dictionary - the resulting snapshot

example:

This will create a blank model snapshot for character chr001 and

add a file

search_type = 'prod/asset'
code = 'chr001'
search_key = server.build_search_type(search_type, code)
context = 'model'
path = "./my_model.ma"

snapshot = server.create_snapshot(search_key, context)
server.add_file(snapshot.get('code'), path)

Different files should be separated by file type. For example,

to check in both a maya and houdin file in the same snapshot:

maya_path = "./my_model.ma"
houdini_path = "./my_model.hip"

server.add_file(snapshot_code, maya_path, file_type='maya')
server.add_file(snapshot_code, houdini_path, file_type='houdini')

To transfer files by uploading (using http protocol):

server.add_file(snapshot_code, maya_path, mode='upload')

To create an icon for this file

TACTIC Developer

79

path = 'image.jpg'
server.add_file(snapshot_code, path, mode='upload', create_icon=True)

To add multiple files at once

file_paths = [maya_path, houdini_path]
file_types ['maya', 'houdini']
server.add_file(snapshot_code, file_paths, file_types=file_types, mode='upload')

TACTIC Developer

80

add_group
add_group(snapshot_code, file_path, file_type, file_range, use_handoff_dir=False, mode=None)

Add a file range to an already existing snapshot

param:

snapshot_code - the unique code identifier of a snapshot

file_path - path of the file to add to the snapshot

file_type - type of the file to be added.

file_range - range with format s

keyparam:

use_handoff_dir - use handoff dir to checkin file

mode - one of 'copy','move','preallocate'

return:

dictionary - the resulting snapshot

TACTIC Developer

81

add_initial_tasks
add_initial_tasks(search_key, pipeline_code=None, processes=[])

Add initial tasks to an sobject

param:

search_key - the key identifying a type of sobject as registered in

the search_type table.

keyparam:

pipeline_code - override the sobject's pipeline and use this one instead

processes - create tasks for the given list of processes

return:

list - tasks created

TACTIC Developer

82

build_search_key
build_search_key(search_type, code, project_code=None, column='code')

Convenience method to build a search key from its components. A

search_key uniquely indentifies a specific sobject. This string

that is returned is heavily used as an argument in the API to

identify an sobject to operate one

A search key has the form: "prod/shot?project=bar&code=XG001"

where search_type = "prod/shot", project_code = "bar" and code = "XG001"

param:

search_type - the unique identifier of a search type: ie prod/asset

code - the unique code of the sobject

keyparam:

project_code - an optional project code. If this is not

included, the project from get_ticket() is added.

return:

string - search key

example:

search_type = "prod/asset"
code = "chr001"
search_key = server.build_search_key(search_type, code)
e.g. search_key = prod/asset?project=code=chr001

search_type = "sthpw/login"
code = "admin"
search_key = server.build_search_key(search_type, code, column='code')
e.g. search_key = sthpw/login?code=admin

TACTIC Developer

83

build_search_type
build_search_type(search_type, project_code=None)

Convenience method to build a search type from its components. It is

a simple method that build the proper format for project scoped search

types. A full search type has the form:

prod/asset?project=bar.

It uniquely defines a type of sobject in a project.

param:

search_type - the unique identifier of a search type: ie prod/asset

project_code (optional) - an optional project code. If this is not

included, the project from get_ticket() is added.

return:

search type string

example

search_type = "prod/asset"
full_search_type = server.build_search_type(search_type)

TACTIC Developer

84

checkout
checkout(search_key, context, version=-1, file_type='main', dir='', level_key=None, to_sandbox_dir=False,
mode='copy')

Check out files defined in a snapshot from the repository. This

will copy files to a particular directory so that a user can work

on them.

param:

search_key - a unique identifier key representing an sobject

context - context of the snapshot

keyparam:

version - version of the snapshot

file_type - file type defaults to 'main'. If set to '*', all paths are checked out

level_key - the unique identifier of the level in the form of a search key

to_dir - destination directory defaults to '.'

to_sandbox_dir - (True|False) destination directory defaults to

sandbox_dir (overrides "to_dir" arg)

mode - (copy|download)

to copy the files to the destination location

return:

list - a list of paths that were checked out

TACTIC Developer

85

clear_upload_dir
clear_upload_dir()

Clear the upload directory to ensure clean checkins

param:

None

keyparam:

None

return:

None

TACTIC Developer

86

connect_sobjects
connect_sobjects(src_sobject, dst_sobject, context='default')

Connect two sobjects together

param:

src_sobject - the original sobject from which the connection starts

dst_sobject - the sobject to which the connection connects to

keyparam:

context - an arbirarty parameter which defines type of connection

return:

dictionary - the last connection sobject created

TACTIC Developer

87

create_search_type
create_search_type(search_type, title, description="", has_pipeline=False)

Create a new search type

param:

search_type - Newly defined search_type

title - readable title to display this search type as

keyparam:

description - a brief description of this search type

has_pipeline - determines whether this search type goes through a

pipeline. Simply puts a pipeline_code column in the table.

return

string - the newly created search type

TACTIC Developer

88

create_snapshot
create_snapshot(search_key, context, snapshot_type="file", description="No description", is_current=True,
level_key=None, is_revision=False, triggers=True)

Create an empty snapshot

param:

search_key - a unique identifier key representing an sobject

context - the context of the checkin

keyparam:

snapshot_type - [optional] descibes what kind of a snapshot this is.

More information about a snapshot type can be found in the

prod/snapshot_type sobject

description - [optional] optional description for this checkin

is_current - flag to determine if this checkin is to be set as current

is_revision - flag to set this as a revision instead of a version

level_key - the unique identifier of the level that this

is to be checked into

triggers - boolean to fire triggers on insert

return:

dictionary - representation of the snapshot created for this checkin

TACTIC Developer

89

create_task
create_task(search_key, process="publish", subcontext=None, description=None, bid_start_date=None,
bid_end_date=None, bid_duration=None, assigned=None)

Create a task for a particular sobject

param:

search_key - the key identifying a type of sobject as registered in

the search_type table.

keyparam:

process - process that this task belongs to

subcontext - the subcontext of the process (context = procsss/subcontext)

description - detailed description of the task

bid_start_date - the expected start date for this task

bid_end_date - the expected end date for this task

bid_duration - the expected duration for this task

assigned - the user assigned to this task

return:

dictionary - task that was created

TACTIC Developer

90

delete_sobject
delete_sobject(search_key)

Invoke the delete method. Note: this function may fail due

to dependencies. Tactic will not cascade delete. This function

should be used with extreme caution because, if successful, it will

permanently remove the existence of an sobject

param:

search_key - a unique identifier key representing an sobject.

Note: this can also be an array.

return:

dictionary - a sobject that represents values of the sobject in the

form name:value pairs

TACTIC Developer

91

directory_checkin
directory_checkin(search_key, context, dir, snapshot_type="directory", description="No description",
file_type='main', is_current=True, level_key=None, metadata={}, mode="copy", is_revision=False,
checkin_type="strict")

Check in a directory of files. This informs TACTIC to treat the

entire directory as single entity without regard to the structure

of the contents. TACTIC will not know about the individual files

and the directory hierarchy within the base directory and it it left

up to the and external program to intepret and understand this.

This is often used when logic on the exact file structure exists in

some external source outside of TACTIC and it is deemed too complicated

to map this into TACTIC's snapshot definition.

param:

search_key - a unique identifier key representing an sobject

dir - the directory that needs to be checked in

keyparam:

snapshot_type - type of snapshot this checkin will have

description - description related to this checkin

file_type - the type of file that will be associated with this group

is_current - makes this snapshot current

level_key - the search key of the level if used

metadata - add metadata to snapshot

mode - determines whether the files passed in should be copied, moved

or uploaded. By default, this is 'copy'

is_revision - flag to set this as a revision instead of a version

checkin_type - auto or strict which controls whether to auto create versionless

return:

dictionary - snapshot

TACTIC Developer

92

download
download(my, url, to_dir=".", filename='', md5_checksum="")

Download a file from a given url

param:

url - the url source location of the file

keyparam:

to_dir - the directory to download to

filename - the filename to download to, defaults to original filename

md5_checksum - an md5 checksum to match the file against

return:

string - path of the file donwloaded

TACTIC Developer

93

eval
eval(expression, search_keys=[], mode=None, single=False, vars={}, show_retired=False)

Evaluate the expression. This expression uses the TACTIC expression

language to retrieve results. For more information, refer to the

expression language documentation.

param:

expression - string expression

keyparam:

search_keys - the starting point for the expression.

mode - string|expression

single - True|False

vars - user defined variable

show_retired - defaults to False to not return retired items

return:

results of the expression. The results depend on the exact nature

of the expression.

example:

#1. Search for snapshots with context beginning with 'model' for the asset with the search key 'prod/asset?
project=sample3d&id=96'

server = TacticServerStub.get()
exp = "@SOBJECT(sthpw/snapshot['context','EQ','^model'])"
result = server.eval(exp, search_keys=['prod/asset?project=sample3d&id=96'])

Please refer to the expression language documentation for numerous

examples on how to use the expression language.

TACTIC Developer

94

execute_cmd
execute_cmd(class_name, args={}, values={})

Execute a command

param:

class_name - the fully qualified class name of the widget

keyparam:

args - keyword arguments required to create a specific widget

values - form values that are passed in from the interface

return:

string - description of command

TACTIC Developer

95

execute_pipeline
execute_pipeline(pipeline_xml, package)

Spawn an execution of a pipeline as delivered from

'get_pipeline_xml()'. The pipeline is a xml document that describes

a set of processes and their handlers

param:

pipeline_xml - an xml document describing a standard Tactic pipeline.

package - a dictionary of data delivered to the handlers

return:

instance - a reference to the interpreter

TACTIC Developer

96

execute_python_script
execute_python_script(script_path, kwargs)

Execute a python script defined in Script Editor

param:

script_path - script path in Script Editor, e.g. test/eval_sobj

keyparam:

kwargs - keyword arguments for this script

return:

dictionary - returned data structure

TACTIC Developer

97

finish
finish()

End the current transaction and cleans it up

params:

description: this will be recorded in the transaction log as the

description of the transction

example:

A full transaction inserting 10 shots. If an error occurs, all 10

inserts will be aborted.

server.start('Start adding shots')
try:
 for i in range(0,10):
 server.insert("prod/shot", { 'code': 'XG%0.3d'%i })
except:
 server.abort()
else:
 server.finish("10 shots added")

TACTIC Developer

98

generate_ticket
generate_ticket()

Ask the server to generate a ticket explicity used for your own commands

return - a string representing the transaction ticket

TACTIC Developer

99

get_all_children
get_all_children(search_key, child_type, filters=[], columns=[])

Get all children of a particular child type of an sobject

param:

search_key - a unique identifier key representing an sobject

child_type - the search_type of the children to search for

keyparam:

filters - extra filters on the query : see query method for examples

columns - list of column names to be included in the returned dictionary

return:

list of dictionary - a list of sobjects dictionaries

TACTIC Developer

100

get_all_dependencies
get_all_dependencies(snapshot_code, mode='explicit', type='ref', include_paths=False,
include_paths_dict=False, include_files=False, repo_mode='client_repo', show_retired=False)

Retrieve the latest dependent snapshots of the given snapshot

param:

snapshot_code - the unique code of the snapshot

keyparam:

mode - explicit (get version as defined in snapshot)

- latest

- current

type - one of ref or input_ref

include_paths - flag to specify whether to include a __paths__ property

containing all of the paths in the dependent snapshots

include_paths_dict - flag to specify whether to include a

__paths_dict__ property containing a dict of all paths in the

dependent snapshots

include_files - includes all of the file objects referenced in the

snapshots

repo_mode - client_repo, web, lib, relative

show_retired - defaults to False so that it doesn't show retired dependencies

return:

list - snapshots

TACTIC Developer

101

get_all_paths_from_snapshot
get_all_paths_from_snapshot(snapshot_code, mode='client_repo', expand_paths=False, filename_mode='')

Get all paths from snapshot

param:

snapshot_code - the unique code of the snapshot

keyparam:

mode - forces the type of folder path returned to use the value from the

appropriate tactic_<SERVER_OS> - conf.xml configuration file.

Values include 'lib', 'web', 'local_repo', 'sandbox', 'client_repo', 'relative'

lib = the NFS asset directory from the server point of view

web = the http asset directory from the client point of view

local_repo = the local sync of the TACTIC repository

sandbox = the local sandbox (work area) designated by TACTIC

client_repo (default) = the asset directory from the client point of view

If there is no value for win32_client_repo_dir or linux_client_repo_dir

in the config, then the value for asset_base_dir will be used instead.

relative = the relative direcory without any base

expand_paths - expand the paths of a sequence check

filename_mode - source or '', where source reveals the source_path of the check

file_types - list: only return files in snapshot with these types

return:

list - paths

TACTIC Developer

102

get_base_dirs
get_base_dirs()

Get all of the base directories defined on the server

return:

dictionary of all the important configured base directories

with their keys

TACTIC Developer

103

get_by_code
get_by_code(search_type, search_code)

Get the info on an sobject based on search code

param:

search_type - the search_type of the sobject to search for

code - the code of the sobject to search for

return:

sobject - a dictionary that represents values of the sobject in the

form name/value pairs

TACTIC Developer

104

get_by_search_key
get_by_search_key(search_key)

Get the info on an sobject based on search key

param:

search_key - the key identifying a type of sobject as registered in

the search_type table.

return:

list of dictionary - sobjects that represent values of the sobject in the

form of name:value pairs

TACTIC Developer

105

get_child_types
get_child_types(search_key)

Get all the child search types

param:

search_key - a unique identifier key representing an sobject

return:

list - the child search types

TACTIC Developer

106

get_client_api_version
get_client_api_version()

return:

string - client api version

TACTIC Developer

107

get_client_dir
get_client_dir(snapshot_code, file_type='main', mode='client_repo')

Get a dir segment from a snapshot

param:

snapshot_code - the unique code of the snapshot

keyparam:

file_type - each file in a snapshot is identified by a file type.

This parameter specifies which type. Defaults to 'main'

mode - Forces the type of folder path returned to use the value from the

appropriate tactic_<SERVER_OS> - conf.xml configuration file.

Values include 'lib', 'web', 'local_repo', 'sandbox', 'client_repo', 'relative'

lib = the NFS asset directory from the server point of view

web = the http asset directory from the client point of view

local_repo = the local sync of the TACTIC repository

sandbox = the local sandbox (work area) designated by TACTIC

client_repo (default) = the asset directory from the client point of view

If there is no value for win32_client_repo_dir or linux_client_repo_dir

in the config, then the value for asset_base_dir will be used instead.

relative = the relative direcory without any base

return:

string - directory segment for a snapshot and file type

example:

If the tactic_<SERVER_OS> - conf.xml configuration file contains the following:

<win32_client_repo_dir>T:/assets</win32_client_repo_dir>

and if the call to the method is as follows:

snapshot = server.create_snapshot(search_key, context)

TACTIC Developer

108

code = snapshot.get('code')
server.get_path_from_snapshot(snapshot.get('code'))

Then, on a Windows client, get_client_dir() will return:

T:/assets/sample3d/asset/chr/chr003/scenes

TACTIC Developer

109

get_client_version
get_client_version()

return:

string - Version of TACTIC that this client came from

TACTIC Developer

110

get_column_info
get_column_info(search_type)

Get column information of the table given a search type

param:

search_type - the key identifying a type of sobject as registered in

the search_type table.

return - a dictionary of info for each column

TACTIC Developer

111

get_column_names
get_column_names(search_type)

This method will get all of the column names associated with a search

type

param:

search_type - the search type used to query the columns for

return

list of columns names

TACTIC Developer

112

get_config_definition
get_config_definition(search_type, view, element_name, personal=False)

Get the widget configuration definition for an element

param:

search_type - search type that this config relates to

view - view to look for the element

element_name - name of the element

keyparam:

personal - True if it is a personal definition

return:

string - xml of the configuration

TACTIC Developer

113

get_connected_sobject
get_connected_sobject(src_sobject, context='default')

Get the connected sobject

params

src_sobject - the original sobject from which the connection starts

keyparam:

context - an arbirarty parameter which defines type of connection

return:

dict - a single connected sobject

TACTIC Developer

114

get_connected_sobjects
get_connected_sobjects(src_sobject, context='default')

Get all of the connected sobjects

param:

src_sobject - the original sobject from which the connection starts

keyparam:

context - an arbitrary parameter which defines type of connection

return:

list - a list of connected sobjects

TACTIC Developer

115

get_dependencies
get_dependencies(snapshot_code, mode='explicit', tag='main', include_paths=False,
include_paths_dict=False, include_files=False, repo_mode='client_repo', show_retired=False)

Return the dependent snapshots of a certain tag

params:

snapshot_code - unique code of a snapshot

keyparams:

mode - explict (get version as defined in snapshot)

- latest

- current

tag - retrieve only dependencies that have this named tag

include_paths - flag to specify whether to include a __paths__ property

containing all of the paths in the dependent snapshots

include_paths_dict - flag to specify whether to include a

__paths_dict__ property containing a dict of all paths in the

dependent snapshots

include_files - includes all of the file objects referenced in the

snapshots

repo_mode - client_repo, web, lib, relative

show_retired - defaults to False so that it doesn't show retired dependencies

return:

a list of snapshots

TACTIC Developer

116

get_expanded_paths_from_snapshot
get_expanded_paths_from_snapshot(snapshot_code, file_type='main')

Return the expanded path of a snapshot (used for

ranges of files)

param:

snapshot_code - the unique code of the snapshot

keyparam:

file_type - each file in a snapshot is identified by a file type.

This parameter specifies which type. Defaults to 'main'

return:

string - path

TACTIC Developer

117

get_full_snapshot_xml
get_full_snapshot_xml(snapshot_code)

Retrieve a full snapshot xml. This snapshot definition

contains all the information about a snapshot in xml

param:

snapshot_code - unique code of snapshot

return:

string - the resulting snapshot xml

TACTIC Developer

118

get_handoff_dir
get_handoff_dir()

Return a temporary path that files can be copied to

return:

string - the directory to copy a file to handoff to TACTIC

without having to go through http protocol

TACTIC Developer

119

get_home_dir
get_home_dir()

OS independent method to Get the home directory of the current user.

return:

string - home directory

TACTIC Developer

120

get_info_from_user
get_info_from_user(force=False)

Get input from the user about the users environment. Questions

asked pertain to the location of the tactic server, the project worked

on and the user's login and password. This information is stored in

an .<login>.tacticrc file.

keyparam:

force - if set to True, it will always ask for new infomation from the

command prompt again

TACTIC Developer

121

get_md5_info
get_md5_info(md5_list, texture_codes, new_paths, parent_code, texture_cls, file_group_dict, project_code)

Get md5 info for a given list of texture paths, mainly returning if this md5 is a match or not

param:

md5_list - md5_list

new_paths - list of file_paths

parent_code - parent code

texture_cls - Texture or ShotTexture

file_group_dict - file group dictionary storing all the file groups

project_code - project_code

mode - texture matching mode (md5, file_name)

return:

dictionary - a dictionary of path and a subdictionary of is_match, repo_file_code, repo_path, repo_file_range

TACTIC Developer

122

get_parent
get_parent(search_key, columns=[], show_retired=True)

Get the parent of an sobject.

param:

search_key - a unique identifier key representing an sobject

keyparam:

columns - the columns that will be returned in the sobject

show_retired - it defaults to False so it does not show retired parent if that's the case

return:

dictionary - the parent sobject

TACTIC Developer

123

get_parent_type
get_parent_type(search_key)

Get of the parent search type

param:

search_key - a unique identifier key representing an sobject

return:

list - a list of child search_types

TACTIC Developer

124

get_path_from_snapshot
get_path_from_snapshot(snapshot_code, file_type='main', mode='client_repo')

Get a full path from a snapshot

param:

snapshot_code - the unique code / search_key of the snapshot

keyparam:

file_type - each file in a snapshot is identified by a file type.

This parameter specifies which type. Defaults to 'main'

mode - Forces the type of folder path returned to use the value from the

appropriate tactic_<SERVER_OS> - conf.xml configuration file.

Values include 'lib', 'web', 'local_repo', 'sandbox', 'client_repo', 'relative'

lib = the NFS asset directory from the server point of view

web = the http asset directory from the client point of view

local_repo = the local sync of the TACTIC repository

sandbox = the local sandbox (work area) designated by TACTIC

client_repo (default) = the asset directory from the client point of view

If there is no value for win32_client_repo_dir or linux_client_repo_dir

in the config, then the value for asset_base_dir will be used instead.

relative = the relative direcory without any base

return:

string - the directory to copy a file to handoff to Tactic without having to

go through http protocol

example:

If the tactic_<SERVER_OS> - conf.xml configuration file contains the following:

<win32_client_repo_dir>T:/assets</win32_client_repo_dir>

and if the call to the method is as follows:

TACTIC Developer

125

snapshot = server.create_snapshot(search_key, context)
code = snapshot.get('code')
server.get_path_from_snapshot(snapshot.get('code'))

in a trigger
snapshot_key = my.get_input_value("search_key")
server.get_path_from_snapshot(snapshot_key)

Then, on a Windows client, get_path_from_snapshot() will return:

T:/assets/sample3d/asset/chr/chr003/scenes/chr003_rig_v003.txt

TACTIC Developer

126

get_paths
get_paths(search_key, context="publish", version=-1, file_type='main', level_key=None, single=False,
versionless=False)

Get paths from an sobject

params:

search_key - a unique identifier key representing an sobject

keyparams:

context - context of the snapshot

version - version of the snapshot

file_type - file type defined for the file node in the snapshot

level_key - the unique identifier of the level that this

was checked into

single - If set to True, the first of each path set is returned

versionless - boolean to return the versionless snapshot, which takes a version of

return

A dictionary of lists representing various paths. The paths returned

are as follows:

- client_lib_paths: all the paths to the repository relative to the client

- lib_paths: all the paths to the repository relative to the server

- sandbox_paths: all of the paths mapped to the sandbox

- web: all of the paths relative to the http server

TACTIC Developer

127

get_pipeline_processes
get_pipeline_processes(search_key, recurse=False)

DEPRECATED: use get_pipeline_processes_info()

Retrieve the pipeline processes information of a specific sobject.

param:

search_key - a unique identifier key representing an sobject

keyparams:

recurse - boolean to control whether to display sub pipeline processes

return:

list - process names of the pipeline

TACTIC Developer

128

get_pipeline_processes_info
get_pipeline_processes_info(search_key, recurse=False, related_process=None)

Retrieve the pipeline processes information of a specific sobject. It provides information from the perspective of a
particular process if related_process is specified.

param:

search_key - a unique identifier key representing an sobject

keyparams:

recurse - boolean to control whether to display sub pipeline processes

related_process - given a process, it shows the input and output processes and contexts

return:

dictionary - process names of the pipeline or a dictionary if related_process is specified

TACTIC Developer

129

get_pipeline_xml
get_pipeline_xml(search_key)

DEPRECATED: use get_pipeline_xml_info()

Retrieve the pipeline of a specific sobject. The pipeline

return is an xml document and an optional dictionary of information.

param:

search_key - a unique identifier key representing an sobject

return:

dictionary - xml and the optional hierarachy info

TACTIC Developer

130

get_pipeline_xml_info
get_pipeline_xml_info(search_key, include_hierarchy=False)

Retrieve the pipeline of a specific sobject. The pipeline

returned is an xml document and an optional dictionary of information.

param:

search_key - a unique identifier key representing an sobject

keyparam:

include_hierarchy - include a list of dictionary with key info on each process of the pipeline

return:

dictionary - xml and the optional hierarachy info

TACTIC Developer

131

get_plugin_dir
get_plugin_dir(plugin)

Return the web path for the specfied plugin

params:

plugin - plugin name

return:

string - the web path for the specified plugin

TACTIC Developer

132

get_preallocated_path
get_preallocated_path(snapshot_code, file_type='main', file_name='', mkdir=True, protocol='client_repo',
ext='')

Get the preallocated path for this snapshot. It assumes that

this checkin actually exists in the repository and will create virtual

entities to simulate a checkin. This method can be used to determine

where a checkin will go. However, the snapshot must exist

using create_snapshot() or some other method. For a pure virtual naming

simulator, use get_virtual_snapshot_path().

param:

snapshot_code - the code of a preallocated snapshot. This can be

create by get_snapshot()

keyparam:

file_type - the type of file that will be checked in. Some naming

conventions make use of this information to separate directories

for different file types

file_name - the desired file name of the preallocation. This information

may be ignored by the naming convention or it may use this as a

base for the final file name

mkdir - an option which determines whether the directory of the

preallocation should be created

protocol - It's either client_repo, sandbox, or None. It determines whether the

path is from a client or server perspective

ext - force the extension of the file name returned

return:

string - the path where add_file() expects the file to be checked into

example:

it saves time if you get the path and copy it to the final destination first.

TACTIC Developer

133

snapshot = my.server.create_snapshot(search_key, context)
snapshot_code = snapshot.get('code')
file_name = 'input_file_name.txt'
orig_path = 'C:/input_file_name.txt'
path = my.server.get_preallocated_path(snapshot_code, file_type, file_name)

the path where it is supposed to go is generated
new_dir = os.path.dirname(path)
if not os.path.exists(new_dir):
 os.makedirs(new_dir)
shutil.copy(orig_path, path)
my.server.add_file(snapshot_code, path, file_type, mode='preallocate')

TACTIC Developer

134

get_protocol
get_protocol()

return:

string - local or xmlrpc

TACTIC Developer

135

get_related_types
get_related_types(search_type)

Get related search types given a search type

param:

search_type - the key identifying a type of sobject as registered in

the search_type table.

return - list of search_types

TACTIC Developer

136

get_resource_path
get_resource_path(login=None)

Get the resource path of the current user. It differs from

create_resource_paths() which actually create dir. The resource path

identifies the location of the file which is used to cache connection information.

An exmple of the contents is shown below:

login=admin
server=localhost
ticket=30818057bf561429f97af59243e6ef21
project=unittest

The contents in the resource file represent the defaults to use

when connection to the TACTIC server, but may be overriden by the

API methods: set_ticket(), set_server(), set_project() or the

environment variables: TACTIC_TICKET, TACTIC_SERVER, and TACTIC_PROJECT

Typically this method is not explicitly called by API developers and

is used automatically by the API server stub. It attempts to get from

home dir first and then from temp_dir is it fails.

param:

login (optional) - login code. If not provided, it gets the current system user

return:

string - resource file path

TACTIC Developer

137

get_server_api_version
get_server_api_version()

return:

string - server API version

TACTIC Developer

138

get_server_version
get_server_version()

return:

string - server version

TACTIC Developer

139

get_snapshot
get_snapshot(search_key, context="publish", version='-1', level_key=None, include_paths=False,
include_full_xml=False, include_paths_dict=False, include_files=False, include_web_paths_dict=False,
versionless=False)

Method to retrieve an sobject's snapshot

Retrieve the latest snapshot

param:

search_key - unique identifier of sobject whose snapshot we are

looking for

keyparam:

context - the context of the snapshot

version - snapshot version

revision - snapshot revision

level_key - the unique identifier of the level in the form of a search key

include_paths - flag to include a list of paths to the files in this

snapshot.

include_full_xml - whether to include full xml in the return

include_paths_dict - flag to specify whether to include a

__paths_dict__ property containing a dict of all paths in the

dependent snapshots

include_web_paths_dict - flag to specify whether to include a

__web_paths_dict__ property containing a dict of all web paths in

the returned snapshots

include_files - includes all of the file objects referenced in the

snapshots

versionless - boolean to return the versionless snapshot, which takes a version of

return:

dictionary - the resulting snapshot

example:

TACTIC Developer

140

 search_key = 'prod/asset?project=sample3d&code=chr001'
 snapshot = server.get_snapshot(search_key, context='icon', include_files=True)

 # get the versionless snapshot
 search_key = 'prod/asset?project=sample3d&code=chr001'
 snapshot = server.get_snapshot(search_key, context='anim', include_paths_dict=True,
 versionless=True)

TACTIC Developer

141

get_table_info
get_table_info(search_type)

Get column information of the table given a search type

param:

search_type - the key identifying a type of sobject as registered in

the search_type table.

return - a dictionary of info for each column

TACTIC Developer

142

get_ticket
get_ticket(login, password)

Get an authentication ticket based on a login and password.

This function first authenticates the user and the issues a ticket.

The returned ticket is used on subsequent calls to the client api

param:

login - the user that is used for authentications

password - the password of that user

return:

string - ticket key

TACTIC Developer

143

get_types_from_instance
get_types_from_instance(instance_type)

Get the connector types from an instance type

param:

instance_type - the search type of the instance

return:

tuple - (from_type, parent_type)

a tuple with the from_type and the parent_type. The from_type is

the connector type and the parent type is the search type of the

parent of the instance

TACTIC Developer

144

get_unique_sobject
get_unique_sobject(search_type, data={})

This is a special convenience function which will query for an

sobject and if it doesn't exist, create it. It assumes that this

object should exist and spares the developer the logic of having to

query for the sobject, test if it doesn't exist and then create it.

param:

search_type - the type of the sobject

data - a dictionary of name/value pairs that uniquely identify this

sobject

return:

sobject - unique sobject matching the critieria in data

TACTIC Developer

145

get_virtual_snapshot_path
get_virtual_snapshot_path(search_key, context, snapshot_type="file", level_key=None, file_type='main',
file_name='', mkdirs=False, protocol='client_repo', ext='')

Create a virtual snapshot and returns a path that this snapshot

would generate through the naming conventions. This is most useful

testing naming conventions.

param:

snapshot creation:

-

search_key - a unique identifier key representing an sobject

context - the context of the checkin

keyparam:

snapshot_type - [optional] descibes what kind of a snapshot this is.

More information about a snapshot type can be found in the

prod/snapshot_type sobject

description - [optional] optional description for this checkin

level_key - the unique identifier of the level that this

is to be checked into

keyparam:

path creation:

-

file_type - the type of file that will be checked in. Some naming

conventions make use of this information to separate directories

for different file types

file_name - the desired file name of the preallocation. This information

may be ignored by the naming convention or it may use this as a

base for the final file name

mkdir - an option which determines whether the directory of the

preallocation should be created

TACTIC Developer

146

protocol - It's either client_repo, sandbox, or None. It determines whether the

path is from a client or server perspective

ext - force the extension of the file name returned

return:

string - path as determined by the naming conventions

TACTIC Developer

147

get_widget
get_widget(class_name, args={}, values={})

Get a defined widget

params:

class_name - the fully qualified class name of the widget

keyparams:

args - keyword arguments required to create a specific widget

values - form values that are passed in from the interface

return:

string - html form of the widget

example:

class_name = 'TableLayoutWdg'

args = {

'view': 'manage',

'search_type': 'prod/asset',

}

widget = server.get_widget(class_name, args))

TACTIC Developer

148

get_widget_setting
set_widget_settings(key, value)

Get widget setting for current user and project

param

key - unique key to identify this setting

return

value of setting

TACTIC Developer

149

group_checkin
group_checkin(search_key, context, file_path, file_range, snapshot_type="sequence", description="",
file_type='main', metadata={}, mode=None, is_revision=False, info={})

Check in a range of files. A range of file is defined as any group

of files that have some sequence of numbers grouping them together.

An example of this includes a range frames that are rendered.

Although it is possible to add each frame in a range using add_file,

adding them as as sequence is lightweight, often significantly reducing

the number of database entries required. Also, it is understood that

test files form a range of related files, so that other optimizations

and manipulations can be operated on these files accordingly.

param:

search_key - a unique identifier key representing an sobject

file_path - expression for file range: ./blah.####.jpg

file_type - the typ of file this is checked in as. Default = 'main'

file_range - string describing range of frames in the form '1

keyparam:

snapshot_type - type of snapshot this checkin will have

description - description related to this checkin

file_type - the type of file that will be associated with this group

metadata - add metadata to snapshot

mode - determines whether the files passed in should be copied, moved

or uploaded. By default, this is a manual process (for backwards

compatibility)

is_revision - flag to set this as a revision instead of a version

info - dict of info to pass to the ApiClientCmd

return:

dictionary - snapshot

TACTIC Developer

150

insert
insert(search_type, data, metadata={}, parent_key=None, info={}, use_id=False, triggers=True)

General insert for creating a new sobject

param:

search_type - the search_type attribute of the sType

data - a dictionary of name/value pairs which will be used to update

the sobject defined by the search_key.

parent_key - set the parent key for this sobject

keyparam:

metadata - a dictionary of values that will be stored in the metadata attribute

if available

info - a dictionary of info to pass to the ApiClientCmd

use_id - use id in the returned search key

triggers - boolean to fire trigger on insert

return:

dictionary - represent the sobject with it's current data

example:

insert a new asset

search_type = "prod/asset"

{
 'code': chr001,
 'description': 'Main Character'
}

insert(search_type, data)

insert a new note with a shot parent

get shot key
shot_key = server.build_search_key(search_type='prod/shot',code='XG001')

data = {
 'context': 'model',

TACTIC Developer

151

 'note': 'This is a modelling note',
 'login': server.get_login()
}

server.insert(search_type, data, parent_key=shot_key)

insert a note without firing triggers

search_type = "sthpw/note"

data = {
 'process': 'roto',
 'context': 'roto',
 'note': 'The keys look good.',
 'project_code': 'art'
}

server.insert(search_type, data, triggers=False)

TACTIC Developer

152

insert_multiple
insert_multiple(data, metadata=[], parent_key=None, use_id=False, triggers=True)

Insert for several sobjects in one function call. The

data structure contains all the infon needed to update and is

formated as follows:

data = [

{ column1: value1, column2: value2, column3: value3 },

{ column1: value1, column2: value2, column3: value3 }

}

metadata = [

{ color: blue, height: 180 },

{ color: orange, height: 170 }

]

params:

search_type - the search_type attribute of the sType

data - a dictionary of name/value pairs which will be used to update

the sobject defined by the search_key

Note: this can also be an array. Each data dictionary element in

the array will be applied to the corresponding search key

keyparam:

parent_key - set the parent key for this sobject

use_id - boolean to control if id is used in the search_key in returning sobject dict

triggers - boolean to fire trigger on insert

return:

a list of all the inserted sobjects

TACTIC Developer

153

insert_update
insert_update(search_key, data, metadata={}, parent_key=None, info={}, use_id=False, triggers=True)

Insert if the entry does not exist, update otherwise

param:

search_key - a unique identifier key representing an sobject.

data - a dictionary of name/value pairs which will be used to update

the sobject defined by the search_key

keyparam:

metadata - a dictionary of values that will be stored in the metadata attribute if available

parent_key - set the parent key for this sobject

info - a dictionary of info to pass to the ApiClientCmd

use_id - use id in the returned search key

triggers - boolean to fire trigger on insert

return:

dictionary - represent the sobject with its current data.

TACTIC Developer

154

log
log(level, message, category="default")

Log a message in the logging queue. It is often difficult to see output

of a trigger unless you are running the server in debug mode.

In production mode, the server sends the output to log files.

The log files are general buffered.

It cannot be predicted exactly when buffered output will be dumped to a file.

This log() method will make a request to the server.

The message will be immediately stored in the database in the debug log table.

param:

level - critical|error|warning|info|debug

message - freeform string describing the entry

keyparam:

category - a label for the type of message being logged.

It defaults to "default"

TACTIC Developer

155

query
query(search_type, filters=[], columns=[], order_bys=[], show_retired=False, limit=None, offset=None,
single=False, distinct=None, return_sobjects=False)

General query for sobject information

param:

search_type - the key identifying a type of sobject as registered in

the search_type table.

keyparam:

filters - an array of filters to alter the search

columns - an array of columns whose values should be

retrieved

order_bys - an array of order_by to alter the search

show_retired - sets whether retired sobjects are also

returned

limit - sets the maximum number of results returned

single - returns only a single object

distinct - specify a distinct column

return_sobjects - return sobjects instead of dictionary. This

works only when using the API on the server.

return:

list of dictionary/sobjects - Each array item represents an sobject

and is a dictionary of name/value pairs

example:

 filters = []
 filters.append(("code", "XG002"))
 order_bys = ['timestamp desc']
 columns = ['code']
 server.query(ticket, "prod/shot", filters, columns, order_bys)

The arguments "filters", "columns", and "order_bys" are optional

TACTIC Developer

156

The "filters" argument is a list. Each list item represents an

individual filter. The forms are as follows:

(column, value) -> where column = value
(column, (value1,value2)) -> where column in (value1, value2)
(column, op, value) -> where column op value
 where op is ('like', '<=', '>=', '>', '<', 'is', '~', '!~','~*','!~*)
(value) -> where value

TACTIC Developer

157

query_snapshots
query_snapshots(filters=None, columns=None, order_bys=[], show_retired=False, limit=None, offset=None,
single=False, include_paths=False, include_full_xml=False, include_paths_dict=False, include_parent=False,
include_files=False)

thin wrapper around query, but is specific to querying snapshots

with some useful included flags that are specific to snapshots

params:

ticket - authentication ticket

filters - (optional) an array of filters to alter the search

columns - (optional) an array of columns whose values should be

retrieved

order_bys - (optional) an array of order_by to alter the search

show_retired - (optional)

returned

limit - sets the maximum number of results returned

single - returns a single sobject that is not wrapped up in an array

include_paths - flag to specify whether to include a __paths__ property

containing a list of all paths in the dependent snapshots

include_paths_dict - flag to specify whether to include a

__paths_dict__ property containing a dict of all paths in the

dependent snapshots

include_full_xml - flag to return the full xml definition of a snapshot

include_parent - includes all of the parent attributes in a __parent__ dictionary

include_files - includes all of the file objects referenced in the

snapshots

return:

list of snapshots

TACTIC Developer

158

reactivate_sobject
reactivate_sobject(search_key)

Invoke the reactivate method.

param:

search_key - the unige key identifying the sobject.

return:

dictionary - sobject that represents values of the sobject in the

form name:value pairs

TACTIC Developer

159

redo
redo(transaction_ticket=None, transaction_id=None)

Redo an operation. If no transaction id is given, then the last

undone operation of this user on this project is redone

keyparam:

transaction_ticket - explicitly redo a specific transaction

transaction_id - explicitly redo a specific transaction by id

TACTIC Developer

160

retire_sobject
retire_sobject(search_key)

Invoke the retire method. This is preferred over delete_sobject if

you are not sure whether other sobjects has dependency on this.

param:

search_key - the unige key identifying the sobject.

return:

dictionary - sobject that represents values of the sobject in the

form name:value pairs

TACTIC Developer

161

set_config_definition
set_config_definition(search_type, element_name, config_xml="", login=None)

Set the widget configuration definition for an element

param:

search_type - search type that this config relates to

element_name - name of the element

keyparam:

config_xml - The configuration xml to be set

login - A user's login name, if specifically choosing one

return:

True on success, exception message on failure

TACTIC Developer

162

set_current_snapshot
set_current_snapshot(snapshot_code)

Set this snapshot as a "current" snapshot

param:

snapshot_code - unique code of snapshot

return:

string - the resulting snapshot xml

TACTIC Developer

163

set_login_ticket
set_login_ticket(ticket)

Set the login ticket with the ticket key

TACTIC Developer

164

set_project
set_project(project_code)

Set the project code

TACTIC Developer

165

set_protocol
get_protocol()

params

string - local or xmlrpc

TACTIC Developer

166

set_server
set_server(server_name)

Set the server name for this XML - RPC server

TACTIC Developer

167

set_widget_setting
set_widget_settings(key, value)

Set widget setting for current user and project

param

key - unique key to identify this setting

value - value the setting should be set to

return

None

TACTIC Developer

168

simple_checkin
simple_checkin(search_key, context, file_path, snapshot_type="file", description="No description",
use_handoff_dir=False, file_type="main", is_current=True, level_key=None, breadcrumb=False,
metadata={}, mode=None, is_revision=False, info={}, keep_file_name=False, create_icon=True,
checkin_cls='pyasm.checkin.FileCheckin', context_index_padding=None, checkin_type="strict",
source_path=None, version=None)

Simple method that checks in a file.

param:

search_key - a unique identifier key representing an sobject

context - the context of the checkin

file_path - path of the file that was previously uploaded

keyparam:

snapshot_type - [optional] descibes what kind of a snapshot this is.

More information about a snapshot type can be found in the

prod/snapshot_type sobject

description - [optional] optional description for this checkin

file_type - [optional] optional description for this file_type

is_current - flag to determine if this checkin is to be set as current

level_key - the unique identifier of the level that this

is to be checked into

breadcrumb - flag to leave a .snapshot breadcrumb file containing

information about what happened to a checked in file

metadata - a dictionary of values that will be stored as metadata

on the snapshot

mode - inplace, upload, copy, move

is_revision - flag to set this as a revision instead of a version

create_icon - flag to create an icon on checkin

info - dict of info to pass to the ApiClientCmd

keep_file_name - keep the original file name

checkin_cls - checkin class

context_index_padding - determines the padding used for context

TACTIC Developer

169

indexing: ie: design/0001

checkin_type - auto or strict which controls whether to auto create versionless

source_path - explicitly give the source path

version - force a version for this check

return:

dictionary - representation of the snapshot created for this checkin

TACTIC Developer

170

split_search_key
split_search_key(search_key)

Convenience method to split a search_key in into its search_type and search_code/id components. Note: only accepts
the new form prod/asset?project=sample3d&code=chr001

param:

search_key - the unique identifier of a sobject

return:

tuple - search type, search code/id

TACTIC Developer

171

start
start(title, description='')

Start a transaction. All commands using the client API are bound

in a transaction. The combination of start(), finish() and abort()

makes it possible to group a series of API commands in a single

transaction. The start/finish commands are not necessary for

query operations (like query(...), get_snapshot(...), etc).

keyparam:

title - the title of the command to be executed. This will show up on

transaction log

description - the description of the command. This is more detailed.

transaction_ticket - optionally, one can provide the transaction ticket sequence

example:

A full transaction inserting 10 shots. If an error occurs, all 10

inserts will be aborted.

server.start('Start adding shots')
try:
 for i in range(0,10):
 server.insert("prod/shot", { 'code': 'XG%0.3d'%i })
except:
 server.abort()
else:
 server.finish("10 shots added")

TACTIC Developer

172

undo
undo(transaction_ticket=None, transaction_id=None, ignore_files=False)

undo an operation. If no transaction id is given, then the last

operation of this user on this project is undone

keyparam:

transaction_ticket - explicitly undo a specific transaction

transaction_id - explicitly undo a specific transaction by id

ignore_files - flag which determines whether the files should

also be undone. Useful for large preallcoated checkins.

TACTIC Developer

173

update
update(search_key, data={}, metadata={}, parent_key=None, info={}, use_id=False, triggers=True)

General update for updating sobject

param:

search_key - a unique identifier key representing an sobject.

Note: this can also be an array, in which case, the data will

be updated to each sobject represented by this search key

keyparam:

data - a dictionary of name/value pairs which will be used to update

the sobject defined by the search_key

Note: this can also be an array. Each data dictionary element in

the array will be applied to the corresponding search key

parent_key - set the parent key for this sobject

info - a dictionary of info to pass to the ApiClientCmd

metadata - a dictionary of values that will be stored in the metadata attribute if available

use_id - use id in the returned search key

triggers - boolean to fire trigger on update

return:

dictionary - represent the sobject with its current data.

If search_key is an array, This will be an array of dictionaries

TACTIC Developer

174

update_config
update_config(search_type, view, element_names)

Update the widget configuration like ordering for a view

param:

search_type - search type that this config relates to

view - view to look for the element

element_names - element names in a list

return:

string - updated config xml snippet

TACTIC Developer

175

update_multiple
update_multiple(data, triggers=True)

Update for several sobjects with different data in one function call. The

data structure contains all the information needed to update and is

formated as follows:

data = {

search_key1: { column1: value1, column2: value2 }

search_key2: { column1: value1, column2: value2 }

}

params:

data - data structure containing update information for all

sobjects

keyparam:

data - a dictionary of name/value pairs which will be used to update

the sobject defined by the search_key

Note: this can also be an array. Each data dictionary element in

the array will be applied to the corresponding search key

triggers - boolean to fire trigger on insert

return:

None

TACTIC Developer

176

upload_file
upload_file(path)

Use http protocol to upload a file through http

param:

path - the name of the file that will be uploaded

	TACTIC Developer
	Table of Contents
	Developer Start-up
	Development Concepts
	Architecture Overview
	The TACTIC Script Editor

	Client API
	Client API Setup
	Client API Structure
	Basic Operations in Python and Javascript
	Checkin / Checkout Operations
	Snapshot Dependency

	Changes
	Search ID to Search Code

	Custom Widgets
	Widget Architecture
	Custom Layout Editor
	Custom Widget Basics
	Widget Development

	Plugins
	Plugin Manager interface
	Create a Plugin
	Packaging a Plugin

	Expression Development
	Using Expressions in Scripting

	Validation
	Validation Set-up

	TACTIC Python Client API Reference
	__init__
	abort
	add_config_element
	add_dependency
	add_dependency_by_code
	add_directory
	add_file
	add_group
	add_initial_tasks
	build_search_key
	build_search_type
	checkout
	clear_upload_dir
	connect_sobjects
	create_search_type
	create_snapshot
	create_task
	delete_sobject
	directory_checkin
	download
	eval
	execute_cmd
	execute_pipeline
	execute_python_script
	finish
	generate_ticket
	get_all_children
	get_all_dependencies
	get_all_paths_from_snapshot
	get_base_dirs
	get_by_code
	get_by_search_key
	get_child_types
	get_client_api_version
	get_client_dir
	get_client_version
	get_column_info
	get_column_names
	get_config_definition
	get_connected_sobject
	get_connected_sobjects
	get_dependencies
	get_expanded_paths_from_snapshot
	get_full_snapshot_xml
	get_handoff_dir
	get_home_dir
	get_info_from_user
	get_md5_info
	get_parent
	get_parent_type
	get_path_from_snapshot
	get_paths
	get_pipeline_processes
	get_pipeline_processes_info
	get_pipeline_xml
	get_pipeline_xml_info
	get_plugin_dir
	get_preallocated_path
	get_protocol
	get_related_types
	get_resource_path
	get_server_api_version
	get_server_version
	get_snapshot
	get_table_info
	get_ticket
	get_types_from_instance
	get_unique_sobject
	get_virtual_snapshot_path
	get_widget
	get_widget_setting
	group_checkin
	insert
	insert_multiple
	insert_update
	log
	query
	query_snapshots
	reactivate_sobject
	redo
	retire_sobject
	set_config_definition
	set_current_snapshot
	set_login_ticket
	set_project
	set_protocol
	set_server
	set_widget_setting
	simple_checkin
	split_search_key
	start
	undo
	update
	update_config
	update_multiple
	upload_file

