TACTIC Developer

TACTIC Developer

TACTIC Developer

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

TACTIC Developer iii

Contents
1 Developer Start-up 1
1.1 Development ConCepts i ittt e e e e 1
1.2 Architecture OVEIVIEW o ittt e e e e e e e 1
1.3 The TACTIC Script Eitor o e e e e e e e e e e 3
1.4 Setting Up a Development Environment e e 6
2 Client API 6
2.1 Client APISetup o o e e e e 6
2.2 Client APIStructure L e e 8
2.3 Basic Operations in Python and Javascript 10
2.4 Checkin/ Checkout Operations o v i v v i i e e e e e e e e e e 13
2.5 Snapshot Dependency e 18
2.6 Custom Widget Basics e 20
2.7 Performance e e 24
2.8 Navigating Search Type Hierarchy e 25
3 Changes 26
3.1 SearchIDtoSearchCode e 26
4 Custom Widgets 27
4.1 Custom Layout Editor e 27
4.2 Widget Development e e 36
4.3 Widget Architecture e e 43
5 Plugins 46
5.1 Plugin Managerinterface L e e e e 46
5.2 CreateaPlugin e e e e e 47
5.3 PackagingaPlugin 48
54 Plugin Versions e 49
6 Expression Development 49
6.1 Using Expressions in SCripting o oo e e e e e e e 49
7 Validation 51
7.1 Validation Set-upo e e e 51
8 Async Loading 52

8.1 Asynchronous Loading L 52

TACTIC Developer iv

9

10

11

12

13

Messaging 53
0.1 MESSAZING . .« o o v v v e e e e 53
Triggers 54
10.1 Python Trigger in Tactic Editor Guideline e 54
10.2 TIIZEETS .« . v v o v e e e e e e e e e e e e e e e e 54
Checkins 56
11.1 Tactic Checkin Process e 56
11.2 Custom Checkin Pipeline e 56
Conventions 59
12.1 Naming Convention Classes oottt i ittt e e 59
TACTIC Python Client API Reference 61
13.1 abort 61
13.2 add_config_element e e e 62
13.3 add_dependency e e e e e 63
13.4 add_dependency_by_code e e e 63
13.5 add_directory e e e 64
13.6 upload_file e e e 64
13.7 add_file e 65
13.8 add_group 66
13.9 add_initial_tasks e e 67
13.10split_search_Key o e e e e 67
13.11build_search_key o e 67
13.12get_by_search_key L L e 68
13.13t_Parent_tyPe v v o o e 68
13.14build_search_type o o e e e e 68
13.15create_search_type L e e e e 69
13.16checkout L L e e 69
13.17clear_upload_dir o e e e e e 70
13.18set_current_snapshot L e e e e 70
13.19get_expanded_paths_from_snapshot L e 70
13.20get_all_paths_from_snapshot L e 70
13.21get_path_from_snapshot e 71
13.22get_snapshot oL e 72
13.23create_snapshot oL e e e 73
13.24create_task L e e e e 73

13.25download L e e e e 74

TACTIC Developer v

13.26eval . . . L 74
13.27execute_cmd e e e e e e 75
13.28finish o 75
13.29get_all_children e e e 75
13.30query_snapshots L L e e e 76
13.31get_by_code e e e e 76
13.32get_dependencies e e 77
13.33get_all_dependencies e e e e e e e e e e 77
13.34@et_SErVer_VETSION o v vt et e e e e e e e e e e e e e e e e e 78
13.35get_client_Version e e e e e e e e e e e e e e e e 78
13.36get_client_api_vVersion e e e e 78
13.37g6t_Server_api_VeTSION v v v v v v v e it e e e e e e e e e e e e e e e e e e e 78
13.38get_home_dir L e 78
13.39get_client_dir L L e e e e e e 79
13.40get_handoff_dir L 79
13.41set_config_definition L e e e e e e 80
13.42get_config_definition L L e e 80
13.43get_table_info L e e e e 80
13.44get_column_info L e 80
13.45get_md5S_info e e e 81
13.46get_pipeline_processes_info L 81
13.47get_preallocated_path L e e e 81
13.48get_resource_path L. e e e 82
13.498et_protocol e e e e e 83
13.50get_protocolo e e 83
13.51delete_SObJECt L e e e e e e e e e e e e e e 83
13.52get_connected_SObJECto e e e e e e e 83
13.53reactivate_SODJECE i i e e e e e e e e e e e e e e e e e 84
13.54get_unique_sobject L. e e e 84
13.55get_connected_SODJECtS L e e e e e e e e e e e 84
13.56connect_sobjects e e e e e 84
13.57set_login_ticket e e e e e e 85
13.58generate_ticket L L e e e e e 85
13.59get_ticket e e e 85
13.60set_widget_Settingo e e e e e e e e e e e e e 85
13.61get_widget_setting e e e e e e 86
13.62update L 86
13.631insert_update L e e e e e e e e e 86

13.64update_multiple e 87

TACTIC Developer vi

13.65insert_multiple L e e e 87
13.66108 88
I3.67QUETY . . o o e e e e e e e 88
13.68redo e 89
I3.69Start e e e e e 90
13.70simple_checkin L e e e e e e 90
13.71group_checkin. e e e 91
13.72directory_checkin L L L 92
13.73get_column_namest i i e e e e e e e e e e 93
1374 Parent e e e e e e e e e e e e e e e 93
13.75get_types_from_instanceo e e e e e e e e e 93
13.76undo e e 93
13.77get_widget o e e 94
I3.78SCL_PIOJECt . . o o v v o o e e e e e e e e e e e e e 94
13.79execute_python_sCript L e e 94
I3.80INSEIt L e e 94
13.81get_pipeline_pProCesses v v v v v v i e i e e e e e e e e e e e e e e e e e e 95
13.82get_related_types L e e e e e 96
13.83get_child_types 96
13.84SEL_SEIVET v e e e e 96
13.85get_info_from_user e e e e e 96
13.86update_config L e 97
13.87execute_pipeline e 97
13.88get_base_dirs L e e e 97
13.89get_paths L e 97
13.90get_virtual_snapshot_path L 98

1391get_plugin_dir L e e e 99

TACTIC Developer 1/99

1 Developer Start-up

1.1 Development Concepts

Introduction

The term "asset" is used often, and has many different meanings in different industries and even in different areas of the same
production facility. In TACTIC, an asset is an atomic entity with metadata and files associated with it. To avoid confusion, the
TACTIC assets are called "searchable objects," shortened to sObjects.

sObjects

sObjects are the atomic entities (or assets) that TACTIC uses to manipulate data and check in files. An sObject can be any entity
required in a production. Examples of sObjects include shots, textures, users, tasks, production notes, and so on.

Every sObject must belong to a search type, also known as sType. Search types are a set of unique string entities that serve
to classify all variations of sObjects. Search types are registered in the "search_object" table in the "sthpw" database. This
table defines the properties for each search type, and is used to ensure that sObjects adheres to their search type properties. For
instance, in a custom project, you may have a custom/shot sType created for shot. Once it’s registered, you can add shot entries
in the shot table that it generates. The shot entries are the shot sObjects.

It is technically possible to store data on assets anywhere, but the TACTIC approach is to use an SQL database so sObject data
can be tracked in the database and rules can be enforced. In TACTIC, each sObject is represented as a table in the database. All
sObjects for your project are stored in a project-wide database and cross-project sObjects (for example, those related to users)
are stored in the main TACTIC database "sthpw."

1.2 Architecture Overview

The TACTIC architecture is an MVC architecture with the following major components:

SObject - Model(M) Provides the data model. All interactions with the data model use sObjects and
their derived classes.
Widget - View(V) Provides the display model, which determines the user interface and how users

interact with the web application. The display architecture is built upon
hierarchical widgets that are SObject-aware (that is, they use sObjects to
define the interface).

Command - Command© Provides higher-level interactions with the data model. All actions affecting
the data model or the filesystem must go through a command layer so that the
changes can be tracked and completely undoable should something go wrong.
Search Provides a search model so widgets can obtain the SObjects they need to
complete the interface display. Each type of sObject has a registered name
which is used in the search engine to identify which sType to search. This
provides a consistent interface to access all sObjects regardless of the location
of the sObject in the database or table.

In summary, widgets make use of the Search, get SObjects, and use commands to change persistent data. The sObject commu-
nication unit binds the view layer with the data model.

Main Data Objects

SObjects (searchable objects) are atomic, self-contained units that contain attributes. A particular sObject can be uniquely
identified by two parameters: a search type and a search ID. Often these two parameters are combined into a "search key" defined
as <search_type>l<search_id> (joined with the "I" character). Search keys allow you to uniquely identify any SObject using a
single string.

Particular SObjects are obtained using the search engine, which generally returns a list of SObjects. The search engine is flexible
enough to allow arbitrary bits of SQL code to be used for a search, although that approach is discouraged. (To maximize code
reuse, it is better to put SQL code inside the low-level business objects that provide static functions to higher level parts of the
framework.)

TACTIC Developer 2/99

Widgets

Widgets are the atomic drawing units. Typically, widgets are SObject-aware and can perform and affect searches and draw
SObjects. Widgets can contain children, and many function calls will traverse down to their children. For example, a widget can
be assigned a search object. It will perform this search and pass the results to all of its children widgets, who will make use of
the result as necessary.

One important widget function is the get_display() function, which draws widgets and can generate HTML. This function can
be as simple as just drawing something that has nothing to do with sObject data, or can be a complicated function retrieving and
displaying sObjects and all of their child sObjects.

Widgets determine how users interact with the web application. They have a number of useful properties that allow for the rapid
development of web applications. For example, they can have a search assigned to them to locate and retrieve sObjects. They
can typically perform actions across the search results, affecting multiple SObjects.

Widgets call events and listen to events, allowing for inter-widget communication. They interact with each other in the web
application by registering events. For example, one widget, on initialization, may register itself as a listener for a named event.
Another widget may call the named event upon an arbitrary action, at which point all widgets that are registered listeners for that
event will be executed. This type of interaction allows for multiple actions to occur as a result of a user interaction, such as the
click of a single button.

Checkin/checkout is the framework for filesystem interaction. All interaction within the checkin/checkout framework is done
through the SObjects themselves so that they can determine their own checkin/checkout conditions and mechanisms. The checkin
framework creates a snapshot SObject that is related to the original SObject through a search_id. It assigns a unique file ID for
every transaction, and creates snapshot attributes for the SObjects.

Engineering requirements for a particular application must be gathered and translated into widgets, including definitions of the
widgets’ relationships to each other.

AJAX Widgets

TACTIC’s widget hierarchy falls naturally within the AJAX paradigm, where widgets are capable of redrawing themselves.
Instead of refreshing the entire page, AJAX widgets actively gather the required information from the page and send only that
information to the web server (as opposed to the entire contents of the page). The widget then processes the information and
updates itself. This technique makes a much more interactive application because the web server only has to draw the individual
widget element instead of the entire page. In addition to a faster and more interactive experience, AJAX widgets significantly
reduce the overall load on the web server, making TACTIC far more scalable with the same resources.

TACTIC’s interface runs on top the the client API, therefore all interaction between the client and the server run on an XMLRPC
layer resting on top of AJAX. This is very convenient for complex interactions between the client and the server.

Web Drawing Engine

This drawing engine is based on numerous interface platforms generally geared towards traditional application design. However,
it has be adjusted to accommodate the unique web environment. A typical application would define a number of predefined
widgets and assemble them in a hierarchical relationship.

Specialized widgets must be created to serve specific functions: for example, checkin/checkout widgets, download widgets,
upload widgets, and navigation widgets.

Persistent Store

All metadata is stored in an industry-standard SQL database. The database tables and rows are clearly marked and readable, so it
is easy to access the data directly. In today’s fast-changing environment, it is essential to be able to quickly read and understand
the underlying data stored to be able to maintain proper support for diagnosing and fixing problems.

All data is accessed through sObject entities, which provide the object relational mappings to the database tables. In general, a
single sObject is represented by a row in the table of a database. The table defines the type of SObjects stored in it, and there is
usually a one-to-one relationship between the attributes of each sObject and the columns in the database.

Directory and File Naming Conventions

It is just as critical to be able to navigate the filesystem and understand what is located there. Therefore, advanced naming conven-
tions are filtered through naming classes, which use clear procedures to create filenames based on metadata in the database. On the
other hand, naming conventions can be driven by some expressions such as {sobject.code}_{snapshot.context}_v{snapshot.version}.{ex

TACTIC Developer 3/99

Directories and file naming are handled slightly differently. TACTIC builds file names procedurally and then stores them in
the database. On the other hand, TACTIC never stores directory names directly in the database, but always builds them up
procedurally. This additional level of abstraction provides the opportunity to reorganize your asset structure as needed (because
the directory structure isn’t hard-coded). Note that there may be other dependencies that are outside the control of TACTIC, so
great care must be taken should you decide to reorganize the directory structure of your assets.

1.3 The TACTIC Script Editor

Outputting to the Debug_ILog Table With The TacticServerStub.log() Function

The TACTIC Script Editor allows for Javascript and Python based scripts to be written and stored in a "custom script" sObject.
These scripts harness the power of Javascript in the web browser along with the power of the Python TACTIC Client API. They
can be structured to run on a general execution, by a trigger or, they can be attached to a button to execute for a specific sObject.

One of the main benefits with using this method of custom scripting in TACTIC is that the script writer does not have to have
direct access to the server’s file system.

TACTIC Script Editor =]
Run Save) Clear_ @
Code: |TPROJECT_TEMPLATE Script Path: |trigger5 !|generate_video_thumbnail
3 @ = |9 |8pt [=] |Javascript|z| s 4 Saved Scripts
& thumbnail using FFMPEG | | chart 'S
+ chart_test
+ process_chart
expenses
s that thumbnails wi erated = +add_expense
] mobi

+ review_mobi_wdg

test
+ calendar_test
+expr_test
+get_login
+get_widget
+ schedule_test

tests
+get_tasks

triggers
+ expense_budget_update
+ generate_video_thumbnail
+task_budget_update
+task_burndown_update
+work_hour_budget_update

placing the rendered thumbnail

m

utility |
+
7| | ingest_dir_assets_w_keywords
Position: Ln1,Ch1 Total: Ln 23, Ch 678 4 +
Togele editor ingest_file_assets_w_keywords

The TacticServerStub.log() method writes to the table named debug_log in the sthpw database.

The first parameter of the TacticServerStub.log() method is named level. The argument for level can be one of the following
keywords:

level critical
error warning
info debug - arbitrary debug level category

The TacticServerStub.log() method can be used as follows:

var server = TacticServerStub.get ()
server.log (’debug’,’My log message for the debug group.’)

The debug level argument provides the convenience of grouping the Debug Log table by debug levels. This table can be found
under:

Admin Views — Server — Debug Log

TACTIC Developer 4/99

Debug Log =

_.,-‘»'ﬂ B - : el 5 items found » Sl EH] L ?
[Category Level Message Timestamp Login
[default debug debug level message May 23, 2012 - 10:10 admin
[default info info level message May 23, 2012 -10:12 admin
[default warning warning level message May 23, 2012-10:13 admin
[default error error level message May 23, 2012 -10:13 admin
[default critical critical level message May 23, 2012 - 10:14 admin

Note

These 5 debug levels are arbitrary.

The only purpose the levels serve are to group the messages when they are sorted in the table.

Outputting to the TACTIC Web Client Output Log With The log Methods
While writing scripts in the TACTIC Script Editor, messages can be output to the Web Client Output Log.

Below are the 5 Javascript methods in use. The most vocal method, log.critical(), is at the top:

TACTIC Script Editor

Code: |CUSTOM_SCRIPTO0021 | Script Path: test

s '@' = B pt lw | | Javascript

EELOE
arning
info

debug

Below is the Output Log console from above the sample script. It can be found under:
Main Gear menu — Tools — Web Client Output Log.

The level of the log messages which appear in the Javascript Output Client Log can be controlled. The level can be adjusted
under: My Admin — User Preferences.

Below is a table to illustrate what the setting for each level will display

critical setting only display messages that are from log.critical()

error setting only display messages that are from log.critical() or log.error()

warning setting only display messages that are from log.critical() or log.error() or log.warning()

info setting only display messages that are from log.critical() or log.error() or log.warning() or log.info()

debug setting only display messages that are from log.critical() or log.error() or log.warning() or log.info() or
log.debug()

For example, if the Web Client Logging Level is set in the preferences to the warning level, we will only see messages that are
from log.warning(), log.error() and log.critical(). ie. Only messages at the same level or above that level will be displayed in the

TACTIC Developer 5/99

Web Client Output Log.

Web Client Determines logging level used by Web Client Qutput Console Pop-up | WARNING E|
Logging Level

TACTIC Script Editor

play TACTIC™ Web Client Qutput Log

= Clear _Run__J _save |

Code: [CUSTOM_SCRIPTO0021 | Script Path: test

,:?’E@J-f] 8 pt

.critical ("My criticael message.");
g.erEor

O.Wwarning

Client API JavaScript Samples
Example 1: Insert A New sObject

// INSERT A NEW SOBJECT

var server = TacticServerStub.get();

var code = "truck";
var asset_name = "truck";
var description = "A model of a truck.";
var search_type = "toy_factory/lego_set";
var project = "toy_factory";
var data = {
"code’ : code,
"name’ : asset_name,
"description’: description
bi
var search_key = server.build_search_key(search_type, code, project);
var result = server.insert (search_type, data);

log.debug (result) ;

Results after insert:
Example 2: Get An sObject by Its Search Key

// GET BY SEARCH_KEY
var server = TacticServerStub.get();

var search_type = "toyrus/lego_set";

var code = "model_crane";

var project = "toyrus";

var search_key = server.build_search_key(search_type, code, project);
var result = server.get_by_search_key (search_key);

alert (result.description);

server.log ("debug", result);

Results after get_by_search_key():

TACTIC Developer 6/99

Example 3: Update An Existing sObject

// UPDATE EXISTING SOBJECT

var server = TacticServerStub.get ();

var code = "model_crane";

var project = "toyrus";

var asset_name = "model crane";

var description = "Revised description of a crane.";
var search_type = "toyrus/lego_set";

var data = {

"code’ : code,
"name’ : asset_name,
"description’: description
bi
var search_key = server.build_search_key (search_type, code, project);
var result = server.update (search_key, data);
server.log ("debug", result);

Results after update:*Example 4: Retire An Existing sObject*

// RETIRE AN EXISTING OBJECT
var server = TacticServerStub.get ();

var search_type = "toyrus/lego_set";
var code = "model_crane";
var project = "toyrus";

var search_key = server.build_search_key (search_type, code, project);
var results = server.retire_sobject (search_key);
server.log ("debug", result);

Results after retire:

1.4 Setting Up a Development Environment

Comming Soon

2 Client API

2.1 Client API Setup

Important Note

Visit the Southpaw support site for more examples and tutorials on the API and its usage. The Support site is the place to go for
wikis, forums, examples, and more.

Setup

The easiest way to interact with the server from the client using the Client API is to use the provided server stub code. This
code includes a class and a utility that are very useful for handling many of the details around client/server interaction and
authentication.

The server stub code is housed in a client folder and can be found in the TACTIC installation in the directory:

<tactic_install_dir>/src/client

TACTIC Developer 7199

The first step is to copy the entire client folder over to the client machine (the machine that will be running the scripts) to
a directory that will be visible to the user. Most facilities would likely put this folder in a centralized location so that every
computer would be able to execute its scripts. The path to this folder must be specified in the PYTHONPATH environment
variable on client machines so that it can be found by the scripts. For instance, if PYTHONPATH = L:/custom_python. you
would put the client folder in L:/custom_python. Please refer to the Python documentation for more information.

Settings

There are three important parameters for setting up the TacticServerStub to connect correctly :

* server: specifies the server that the server stub will connect to. This server can be a domain name ("localhost") or an IP address
("127.0.0.1"). It can even be a port number ("localhost:9000"). This setting allows you to switch between various TACTIC
servers in your facility.

* project: specifies the current project. In TACTIC, the project is a state under which interactions occur.

* ticket: specifies the authentication ticket, a long alpha-numeric string that encrypts the login and password so that these values
remain secure.

There are a number of methods to set these parameters.
The first method is to set the following parameters directly in the server stub reference:

server = TacticServerStub ()

server.set_server (tactic_server)

server.set_project (project)

this is not needed if you have run python get_ticket.py
server.set_ticket (ticket)

These settings override all settings obtained elsewhere. This method ensures that these values are set up correctly based on some
external information.

To set up a server stub, you can insert the stub information in your script (described in the client API documentation as part of
the get_ticket() function). Or, you can run the script get_ticket.py, which is included with the client API example set (located
in <TACTIC_INSTALL_DIR>/src/client/bin). When the stub is run, it creates a ticket file on the user’s machine which will be
used each time any API script is run to authenticate which user is running the script.

The second method is through environment variables set up across the studio:

* TACTIC_SERVER: sets the server that the server stub will connect to.
* TACTIC_PROJECT: sets the project that the server stub will connect to.
e TACTIC_TICKET: sets the authentication ticket.

This method can be used by programs that set up user environments, and has other advantages. It is easy to switch the settings
using a shell variable. The program that sets up the environment does not have to be written in Python. It can even be simple to
set up by using a shell command line to set the environment variables.

The third method makes use of a resource file located in the user’s home directory. This resource file has a simple format:

login=joe

server=localhost
ticket=97d2bec3d73da71lcl4fb724a47a£5053
project=bar

The login tag doesn’t actually do anything here, since the user name is encapsulated in the ticket itself.

The fourth method is described below:

If you have written a GUI or have some means of retrieving the user’s password on individual session instead, you can use the
following construct to set the ticket. The server’s IP and project should be set beforehand.

TACTIC Developer 8/99

server = TacticServerStub.get ()
server_IP = 710.10.50.100"
my.set_server (server_IP)
my.set_project (! sample3d’)

ticket = my.get_ticket (login, password)
my.set_ticket (ticket)

Once you have set up the environment for the client API to run correctly, you can try a sample script. The following simple script
illustrates the structure of a TACTIC Client API program:

import sys
from tactic_client_1lib import TacticServerStub

def main (args) :
server = TacticServerStub ()
server.start ("Ping Test")

try:
print server.ping/()
except:
server.abort ()
raise
else:

server.finish ()

if _ _name_ == '__main_ ':
executable = sys.argv[0]
args = sys.argv[l:]

main (args)
This simple program will ping the server and return "OK". If everything is set up correctly, you should be able to run this program
from a shell as follows:

python ping.py
OK

If you see "OK", then you have successfully connected to the TACTIC server using the client APIL.

If you need to run python get_ticket.py first, it can be found under: client/bin/get_ticket.py.

2.2 Client API Structure

Directory Structure

The client API files are located in the directory <tactic_install_dir>/src/client. This directory contains all the files need for the
client API. Typically you would copy all of the files in this directory to a location visible to the client machine.

There are a number of directories in this Client API directory:

* bin: contains useful supported scripts.
* test: contains unit tests for the client API.
» examples: contains a number of small examples to be used for reference.

e tactic_client_lib: the main directory for the Client API.

The main directory "tactic_client_lib" is the base module that you will use to access all of the TACTIC client APIs. Typically,
you would import this module when working with the client API:

from tactic_client_1lib import TacticServerStub

TACTIC Developer 9/99

There are a number of subdirectories under tactic_client_lib:

* tactic_server_stub.py: contains the main server class "TacticServerStub". This class encapsulates all interactions to the
TACTIC server and is generally the primary class used with the client AP

* (ALPHA) application: contains all the classes that deal with interaction with third-party applications. It provides an abstrac-
tion layer for applications and allows you to set data that can be used by TACTIC’s introspection (verification).

e common: contains a number of convenience functions that are commonly used.

* interpreter: contains the client-side pipeline interpreter. This interpreter executes pipelines defined on the TACTIC server.
These pipelines can be used to create highly complex modular client-side processes. Typical uses are for the checkin and
checkout pipelines.

* test: contains a number of test classes used by the unit tests.

You should point to the Client API by having the directory src/client/tactic_client lib stored somewhere accessible to client
machines. Import the Tactic_Server_Stub with the following line in your script from tactic_client_lib:

import Tactic_Server_Stub

(For more details, visit the Southpaw Support site.)
tactic_server_stub.py

This module contains the TacticServerStub class, which encapsulates all interactions with the TACTIC server. This class lets
you make full use of the TACTIC architecture in your custom applications. Although the TacticServerStub can be instantiated,
it is often preferable to use it as a singleton so you can set up the server once and make use of it from various locations in your
applications:

from tactic_client_1lib import TacticServerStub
server = TacticServerStub.get ()

Once you have a reference to the TacticServerStub, you must set it up using three essential parameters: server, ticket, project.
These parameters are described in more detail in the client API setup documentation.

Interpreter

This directory contains all the code needed to execute pipelines on the client. Pipelines in TACTIC are arbitrary process flow
graphs. These pipelines have a number of advantages over other methods:

* They promote reusability, with each process handler having a consistent interface from which it can extract information.
Typically, handlers are like mini programs which for the most part are compartmentalized and have little to do with each other.

* They can be visualized. Using the pipeline editor, the entire flow of the pipeline can be graphically visualized
» They can be specialized. Each aspect of the pipeline can be written by those team members most suited for the task.

* They lower the bar to creating complex pipelines. With a large library of well-written handlers, it becomes possible for non-
developers to create pipelines by graphically piecing processes together.

Application
This directory handles all of TACTIC’s interaction with third-party applications.

Note

This section is still in active development.

TACTIC Developer

10/99

2.3 Basic Operations in Python and Javascript

Note
If you haven’t done so, please review the Client API Setup doc.

Simple Ping

The following is a skeleton script interacting with the Client API:

Basic Operations

from tactic_client_lib import TacticServerStub

def main () :

server = TacticServerStub ()
server.start ("Ping Test")
try:

print server.ping/()
except:

server.abort ()

raise
else:

server.finish ()

if __ name_ == '_ _main_ ':
main ()
Executing this script will give the following output:

$ python examples/ping.py
OK

If you haven’t had a ticket in the user directory, please run python get_ticket.py. Otherwise, you will get an error like this:

File "G:\TSI\3.0_client\client\tactic_client_lib\tactic_server_stub.py",
line 2789, in _setup raise TacticApiException (msg)
tactic_client_lib.tactic_server_stub.TacticApiException:
[C:/sthpw/etc/<someuser>.tacticrc] does not exist yet.
information to authenticate the server.

variables or run get_ticket.py

There is not enough
Either set the appropriate environment

The first line imports the TacticServerStub class. This class is a stub to the server and relays function calls between the TACTIC
server and the client API code. It handles all the details of how to connect to the server. It also maintains status information,

including the current project and whether or not the session is authenticated.

All client API scripts should run within a transaction. This requirement is achieved using server.start("Ping Test"), which initiates
a new transaction on the server. All subsequent server interactions are grouped in the same transaction until server.finish() is

executed. The function server.abort() is used to abort the transaction should any error occur in the body of the code.

Querying data

The most fundamental operation in the Client API is the query function, which enables access to direct information on an SObject

The following example illustrates the use of the query function:

define the search type we are searching for

search_type = "prod/asset"

define a filter
filters = []
filters.append(("asset_library", "set"))

TACTIC Developer

11/99

do the query
assets = my.server.query (search_type, filters)

)

print "found [%d] assets" % len(assets)

go through the asset and print the code
for asset in assets:

code = asset.get ("code")

print (code)

Executing this example will give the following output:

$ python examples/query.py
found [3] assets

chr001

chr002

chr003

In this example, a search_type is first defined. This search type is a uniquely named identifier for a class of SObjects.

A list of filters is next defined. These filters allow you to narrow the search to specific SObjects. In this example, only assets of

the asset_library = "set" will be found.

Next, the assets are retrieved using the query() function, which returns a list where each element is a serialized dictionary of an

SObject. In this example, the code for each asset is retrieved and printed.

Filters are very important in the query function because they narrow down searches to find the specific SObjects you are looking
for. The filters are very flexible and support a wide range of different modes. A sample of the supported modes is shown below:

simple search filter

filters = []

filters.append(("name_first", "Joe"))

results = my.server.query (search_type, filters, columns)

search with ’and’: where name_first = ’Joe’ and name_last = ’Smoe’
filters = []

filters.append(("name_first", "Joe"))

filters.append(("name_last", "Smoe"))

results = my.server.query (search_type, filters, columns)

search with ’'or’: where code in ('’ joe’,’mary’)

filters = []

filters.append(("code", ("jo e", "mary")))

results = my.server.query (search_type, filters, columns)

search with ’or’: where code in ('’ joe’,’mary’) order by code

filters = []
filters.append(("code", ("joe", "mary")))
order_bys = ['name_first’]

results = my.server.query (search_type, filters, columns, order_bys)

search with like: where code like ' Jj%’

filters = []

filters.append(("code", "like", "3j%"))

results = my.server.query (search_type, filters, columns)

search with regular expression: code ~ ’'ma’

TACTIC Developer

12/99

filters = []
filters.append(("code", "~", "ma"))
results = my.server.query (search_type, filters,
search with regular expression: code !~ ’'ma’
filters = []
filters.append(("code", "!~", "ma"))

Insert and Update

It is essential to insert SObjects and update their values.

The following code creates a new asset in the database.

define a search type for which to add a new entry

search_type = ’'prod/asset’

build a data structure which is used as data for the new sobject

data = {
"code’: 'chr001’,
"name’ : ’"Bob’,
"description’: ’"The Bob Character’

server.insert (search_type, data)

The following code snippet updates an existing asset in the database:

define the search key we are searching for

search_type = "prod/asset"
code = ’"vehicle001’
search_key = server.build_search_key (search_type,

build a dataset of updated data
data = {

"description’: 'This is a new description’

}
do the update
asset = my.server.update (search_key,

print asset.get ("description")

data)

columns)

code)

Note that the search key is used to identify the precise sObject being updated. This search key uniquely identifies an sObject in

TACTIC. With this search key, TACTIC is able to precisely update the specified sObject.

Javascript Client API

The TACTIC Client API can be accessed in Javascript as well as Python. One can deduce its usage from the Python Client
API doc. One main point to notice is that the keyparams in the Client API doc, also known as keyword argumnets, should be
expressed as a hash {} in javascript. Here are some examples:

\1. Using the eval() function, we want to find all the anim snapshots checked in with the asset chrO01.

var server = TacticServerStub.get ();

var exp = "@SOBJECT (sthpw/snapshot [/ context’,”anim’])";
var result = server.eval (exp, {search_keys: ['prod/asset?project=sample3d&code=chr001’]});

log.critical (result);

\2. Display the notes written for the selected assets in the UL

var server = TacticServerStub.get ()

var search_keys = spt.table.get_selected_search_keys();

TACTIC Developer 13/99

var exp = "Q@SOBJECT (sthpw/note)";
if (search_keys.length > 0) {
var result = server.eval (exp, {search_keys: search_keys});

log.critical (result);

\3. Display only the task code in anim or 1gt process with description containing the word fire, not specific to any particular asset.

var server = TacticServerStub.get();

var exp = "@GET (sthpw/task[’process’, ’in’, ’anim|lgt’][’description’,’EQ’,’'fire’].code)";
var result = server.eval (exp);

log.critical (result);

\4. To insert a note for an asset chrO01 under the model process and context.

var server = TacticServerStub.get ();

var sk = server.build_search_key (’prod/asset’,’chr001’);

server.insert (' sthpw/note’, {’note’: 'A test note’, process: ’'model’, context: ’'model’, <
login: "admin’},

{parent_key: sk});

\5. To get the latest snapshot of the asset chrOO1 for the current project

var server = TacticServerStub.get ();

var sk = server.build_search_key ('prod/asset’,’chr001’);

var snapshot = server.get_snapshot (sk, {context:’anim’, include_paths_dict: true, —
versionless: false});

log.critical (snapshot);

\6. To run a query of snapshots using filters and limit keyword argumnets

var server = TacticServerStub.get();

var filters = [];

// use built-in expression operator EQ, NEQ, EQI, or NEQI to specify the search_type has to «
contain prod/shot

filters.push([’search_type’, ’"EQ’,’prod/shot’]);

filters.push([’project_code’,’sample3d’]);

var snapshot = server.query_snapshots ({filters: filters, limit: 5});

log.critical (snapshot) ;

2.4 Checkin / Checkout Operations

Checking files in
The Client API has access to the full range of TACTIC’s asset management system.

Any sObject can become a "container" for check-ins. This has the advantage that you can use this one SObject (container) to
check in files using the deep set of check-in tools provided by TACTIC. The rest of this section describes the different types of
check-ins available.

Simple Checkin
The simple_checkin() function allows you to check in a single file.

file_path = "./test/miso_ramen. jpg"

now check in the file

search_type = "unittest/person"
code = "joe"
context = "test_checkin"

search_key = my.server.build_search_key (search_type, code)

TACTIC Developer 14 /99

simple check-in of a file. No dependencies

desc = A Simple Checkin’

snapshot = my.server.simple_checkin (search_key, context, file_path, description=desc, <+
mode="upload")

print snapshot.get (’ snapshot’)

The simple_checkin is the most basic type of check-in. It creates a snapshot and then checks a file into that snapshot. The newly
created snapshot is returned.

<snapshot>
<file name="miso_ramen_v001l. jpg" type='main’ code=’123BAR’'/>
</snapshot>

The exact file name that is checked in will vary depending on the specific implemented naming conventions

Group (or Sequence) Checkin

The group_checkin() function allows you to check in a sequence of files, defined by a frame range:

<start>-<end>/<by>

For example, a frame range of 1 to 10 is descibed as "1-10". Or every second frame from frame 20 to frame 50 can be described
as "20-50/2".

TACTIC provides two notations to describe the file names of a range of frames. This special notation, in conjunction with the
frame range, can generate a sequence of files. The two notations are as follows:

e <base>.##.<ext>

e <base>.%0.4d.<ext>

Here is a code example of checking in a sequence of files:

pattern = "./test/miso_ramen.%0.4d.tif"
file _range = "1-24’
context = ’'beauty ’

build the search key

search_type = "unittest/person"

code = "joe"

search_key = my.server.build_search_key (search_type, code)

simple checkin of a file

desc = ’'A Checkin of a group of files’
context = "test_checkin"
snapshot = server.group_checkin (search_key, context, file_pattern, file_range)

print snapshot.get (' snapshot’)

When executed, this example will check in a sequence of 24 files starting from 1 to 24. It should be noted that this method will
by default expect that the files have been uploaded to the server. For this reason, it is often recommended to use preallocated
check-ins for both sequence and directory check-ins.

Directory Checkin

As the name suggests, a directory check-in enables an entire directory and all of its subdirectories to be checked in. TACTIC
does not keep track of the contents of the checked-in directory. This allows you to check in complex directory structures without
having to inform TACTIC of all of the details of the contents. This might be the best approach when all the details of the directory
are already handled by some other system so it is not necessary for TACTIC to track things.

Here is a code example of checking in a directory:

TACTIC Developer 15/99

file_path = "./test/XG002/beauty"

build the search key

search_type = "unittest/person"

code = "joe"

search_key = my.server.build_search_key (search_type, code)
context = "test_checkin"

simple check-in of a file.
desc = A Simple Checkin’
snapshot = my.server.directory_checkin (search_key, context, file_path, description=desc <«

)
print snapshot.get (’ snapshot’)

Note that this code is very similar to single file check-ins (simple_checkin()), because TACTIC treats a directory check-in in
a similar manner to a file check-in. It uses the leaf directory as the file name. It is important to consider naming conventions,
because this leaf directory will be handled using file naming conventions even though it is a directory.

As with group_checkin(), this method already expects the files to have been uploaded to the server in the appropriate place. There
are various modes that can be used to alter the manner in which the files get to the server repository. For details, see the "modes"
section below.

Piecewise check-ins

TACTIC allows you to build up a check-in piecewise or stages. This is a powerful feature because you can build a check-in
over the course of many operations (and many transactions if desired) and the whole set of operations will be treated as a single
versioned entity. The TACTIC snapshot definition allows for the entry of multiple files into a single check-in. Typically, the
process begins by creating a new "empty" snapshot. This snapshot is a placeholder which reserves a version and context for a
particular set of future operations. Once this empty snapshot is created, you can start adding files and dependencies to it.

The following example checks in a Maya file and a corresponding OB file.

maya_path = "./test/chr001/chr001_model.ma"
obj_path = "./test/chr001/chr001_mode.obj"

build the search key

search_type = "unittest/person"
code = "joe"
context = "test_checkin"

search_key = my.server.build_search_key (search_type, code)

create an empty snapshot

desc = 'A Piecewise Checkin’

snapshot = my.server.create_snapshot (search_key, context, description=desc)
print "empty"

print snapshot.get (’ snapshot’)

snapshot_code = snapshot.get (' code’)

snapshot = my.server.add_file(snapshot_code, maya_path, file_type='maya’)
snapshot = my.server.add_file(snapshot_code, obj_path, file_ type=’'obj’)
print

print "two files"

print snapshot.get (/ snapshot’)

Executing this code will result in the following:

empty
<snapshot/>

two files
<snapshot>
<file name='chr001_model_v00l.ma’ file_code='1044BAR’ type='maya’/>

TACTIC Developer 16/99

<file name=’'chr001_model_v00l.obj’ file_code="1045BAR’ type='obj’/>
</snapshot>

First, an empty snapshot is created using create_snapshot(), then files are added to this snapshot one by one. Note that the type
here is explicitly specified. This type differentiates one file in a snapshot from another.

It is also possible to add a sequence of files or even a directory to a snapshot:

pattern = "./test/miso_ramen.%0.4d.tif"

file range = "1-24’

snapshot = server.add_group (snapshot_code, file_pattern, file_range, file_type=’ <&
sequence’)

print snapshot.get (’ snapshot’)

directory = "./test/test_directory"
snapshot = server.add_directory (snapshot_code, directory, file_type=’directory’)
print snapshot.get (' code’)

Executing the last code snippet will give the following results:

<snapshot>
<file name="mise_ramen.%0.4d.tif" file_ code=’1047BAR’ type='sequence’ />
</snapshot>

<snapshot>
<file name="mise_ramen.%0.4d.tif" file_code="1047BAR’ type=’'sequence’ />
<file name="test_directory" file_code=’1047BAR’ type='directory’/>
</snapshot>

Checkin Modes

There are various modes that you can use to check in files. These modes determine how a file will be transferred to the repository.

* upload: Uploads the files to a temporary directory
* copy: Copies the files to the handoff directory

* move: Moves the files to the handoff directory.

The previous simple_checkin() example uses the "upload" mode. This means that the client will connect to the server and use an
HTTP connection to upload the file to the server where it will be subsequently checked in. HTTP does not require any additional
setup and it may be the only choice available for facilities having only WAN access to the TACTIC server. However, HTTP is a
very slow transport protocol so, if possible, it is better and faster to use other available modes.

The copy and move modes use a "handoff" directory, which is an intermediate directory that is visible on the network to both
the client machine and the TACTIC server. When the check-in is executed, the files are first copied or moved to this handoff
directory. The TACTIC server is then notified and grabs the files and puts them into the repository, renaming as the naming
conventions stipulate. The files are always "moved" from the handoff directory to the repository. The advantage of using these
modes over the "upload" mode is that they go through NFS or CIFS. These modes make use of the fast networks and huge file
servers that are available in typical media and production facilities.

The copy and modes require a bit of setup because the server and the client must be able to see the handoff directory. You
need to configure the TACTIC server configuration file, located in <site_dir>/config/tactic_<os>-conf.xml. This file contains the
following relevant settings:

* win32_client_handoff_dir: the handoff directory as seen from a Windows client
¢ linux_client_handoff_dir: the handoff directory as seen from a Linux client
* win32_server_handoff_dir: the handoff directory as seen from a Windows TACTIC server

* linux_server_handoff_dir: the handoff directory as seen from a Linux server

TACTIC Developer 17 /99

Note that the win32 settings apply to all flavors of Windows, including Windows 64-bit machines. The Linux settings apply to
all POSIX machines including Debian base operating systems and Mac OS X.

After you set the configuration, you can then use the copy or move modes to take advantage of the handoff directory:

simple check-in of a file using move mode

desc = A Simple Checkin’

snapshot = my.server.simple_checkin (search_key, context, file_path, description=desc, <+
mode="move")

print snapshot.get (’ snapshot’)

Note that the only difference in this example from earlier check-in examples is that the mode parameter is set to "move".
Preallocated check-in (mode=""preallocate'")

Preallocated check-ins are the most efficient check-ins. Bandwidth and storage space are expensive commodities in a typical
media or production facility, so there is a definite cost and time benefit to reducing their use as much as possible.

Preallocated check-ins enable a client process to be checked directly into the repository. They are recommended for check-ins
that are very heavy in either bandwidth or disk usage and are designed to minimize both. Some production processes that would
benefit from using this check-in mode include rendering frames, ingesting plates, simulating data, and so on.

The following steps describe the process for preallocating check-ins:

1. Create an empty snapshot to reserve a check-in version and context.
2. Ask for a path in the repository from the TACTIC server.
3. Create the files directly in the path given by the TACTIC server.

4. Inform TACTIC that the files have been placed in the appropriate location.

The path supplied by TACTIC in the preallocation is located directly in the repository. The process generating the files can
thus save the files directly to the correct location in the repository (following all the predefined naming conventions). Files are
created directly in the repository with the correct directory and file name as TACTIC would have checked them in using the other
methods. This eliminates later having to copy or move files around the network unnecessarily, as is typically required by other
check-in modes.

Because the simple_checkin(), group_checkin() and directory_checkin() functions perform the entire check-in process in one
step, you cannot use them for preallocated check-ins. Instead, you would use a piecewise check-in to build up the checked in
parts. The following is an example of a preallocated check-in using a piecewise approach:

search_type = "prod/render"
code = "XG002_beauty"
search_key = my.server.build_search_key (search_type, code)

create an empty snapshot

desc = 'A Preallocated Checkin’

context = "render"

snapshot = my.server.create_snapshot (search_key, context, description=desc)

get the preallocated path

snapshot_code = snapshot.get (' code’)

file_pattern = snapshot.get_preallocated_path (snapshot_code, file_type="main")
print "file_pattern: ", file_path

generate the files

for i in range(l, 20):
file_path = file pattern % i
render_file(file_path)

add the files to the snapshot

snapshot = server.add_group (snapshot_code, file_type="main", file_range="1-20", mode=" <>
preallocate")

print snapshot.get ("snapshot")

TACTIC Developer 18/99

Executing the above code would result in output something like:

file_pattern: XG002_beauty_v012.%0.4d.tif
<snapshot>

<file name="XG002_beauty_v012.%0.4d.tif" file_code="123BAR" type="main"/>
</snapshot>

The file pattern returned is completely dependent on naming conventions. In this case, the search_type would have had to define
a naming convention whereby the context of "render" produces the above file pattern. For example, the file naming convention
code could include:

def prod_render (my) :
render = my.sobject
ext = my.get_file_ext ()

parts = []
parts.append(render.get_value (’'code’))

o)

parts.append("v%0.3d" % my.snapshot.get_value ("version"))

file_name = "_".join(parts) + ".%0.4d" + ext
return file_name

(See the naming convention documentation for more information on how to set up naming conventions.)

It should be noted that the function get_preallocated_path() returns a full path, including the filename as specified by the naming
conventions. Ideally, TACTIC must be able to generate the correct path that can be used to save the files (as in the example
above).

There is enormous advantage to using preallocated check-ins. Files are created directly to the repository, eliminating all of the
unnecessary copying of files around the servers. When groups of files reach the muti-gigabyte or even terabyte range, it becomes
prohibitively expensive to check in files in the traditional manner. Preallocated check-ins maximize the use of your internal
system architecture.

In-Place Checkins

In general, the in-place check-in should be considered as the last resort. In-place check-ins do not make use of the TACTIC
naming conventions, and may be the only option when you are confronted by a legacy directory structure. Using this check-in
method makes the assumption that you will be able to later define logic that will map to a desired naming convention. As a
guideline, naming conventions should be procedural and as simple as possible, so you must plan carefully before considering
in-place check-ins.

2.5 Snapshot Dependency

Types of dependencies

Snapshots control versioning in TACTIC. When processing a checkin, TACTIC creates a snapshot that contains an XML de-
scription of what was checked in. Snapshots can also be dependent on any number of other snapshots (through a "ref" tag).
Taking advantage of this dependency relationship, you can create complex dependency trees for complex scenes, with the option
of undoing them if required.

There are two types of dependencies:

* hierarchical: The given snapshot contains the referenced snapshot

* input: The given snapshot used or was created from a referenced snapshot (but does not contain the contents of that snapshot)

Connecting snapshots

Dependencies are connected using the add_dependency_by_code() method, which takes an existing snapshot and adds the ap-
propriate reference tag to it.

The following example shows how to connect two snapshots:

TACTIC Developer 19/99

search_type = "prod/asset"
code = "chr001"
search_key = server.build_search_key (search_type, code)

checkin a model
model_snapshot = server.simple_checkin (search_key, model_path, context="model")
model_snapshot_code = model_snapshot.get (' code’)

checkin a rig
rig_snapshot = server.simple_checkin (search_key, rig_path, context="rig")
rig_snapshot_code = rig_snapshot.get (' code’)

add the model dependency to the rig
snapshot = server.add_dependency_by_code (rig_snapshot_code, model_snapshot_code)
print snapshot.get (’ snapshot’)

Executing the above example would output:

<snapshot>
<file name="chr001l_rig _v00l.ma" file_code="123BAR" type='main’ />
<ref context="model’ version=’3’ search_type=’prod/asset?project=sample3d’ search_id <
=4’ />
</snapshot>

The ref tag is the reference to another checkin. In this case, the reference can be interpreted as being contained in the snapshot
(that is, this is a hierarchical dependency).

Sometimes, it is not possible to store or retrieve version information for an SObject within a session if a particular application
provides only the filename. It is generally assumed that a filename is unique for each search_type in each project (this is not
strictly enforced, but should be as best practice), so it is possible to reverse-map a filename to a snapshot. In this case, you can
try to add a dependency using the add_dependency() method:

file_path = extract_dependent_path ()
snapshot = server.add_dependency (snapshot_code, file_path)

This method will attempt to link the filename with the appropriate snapshot.
Input references

As opposed to the previous example of hierarchical references, there is a second type of dependency called an input reference.
Input references are dependencies where a particular snapshot was used to produce another snapshot, but the resulting snapshot
does not contain the contents of the originating snapshot. As an example, a Photoshop file may be used to generate a texture
map, but the texture map does not need to contain the Photoshop file.

Adding an input reference is simply a matter of setting the "type" argument to "input_ref":

source_path = "./test/texture.psd"
image_path = "./test/texture.tif"

check in the photoshop file

source_snapshot = server.simple_checkin(search_key, context="source", file_path= ¢
source_path)

source_snapshot_code = source_snapshot.get (' code’)

source_repo_path = server.get_path_from snapshot (source_snapshot_code)

checkin the image
image_snapshot = server.simple_checkin(search_key, context="image", file_path=image_path)

add an input dependency

image_snapshot_code = image_snapshot.get (' code’)

image_snapshot = server.add_dependency(image_snapshot_code, source_repo_path, type=" <
input_ref")

print snapshot.get (’ snapshot’)

TACTIC Developer 20/99

The above code would produce output like the following:

<snapshot>
<file name="texture_image_v00l.tif" file_code="123BAR" type='main’ />
<ref context=’source’ version=’3’ search_type='prod/asset?project=sample3d’ search_id='4’ ¢
type="input_ref" />
</snapshot>

By managing dependencies at the time of each checkin, it is possible to build up a dependency tree. Thus each version of every
checkin has its own independent dependency tree.

2.6 Custom Widget Basics

Although any execution environment can interact with TACTIC by interfacing through the Client API, most often, users will be
interacting with TACTIC through the browser. TACTIC’s main interface is the browser. All browsers come with the Javascript
language interpreter built-in and thus any rich interface that integrates with TACTIC will need to interact with the various
components using Javascript.

Three core frameworks in TACTIC work together to create a rich web interface.

* CustomLayoutWdg: provides the ability to create the visual interface by laying out widgets using HTML templating
* Behaviors: provides a framework to create complex behaviors that is much easier to use than the browsers default event system.

* Applet: provides the interaction to the client machine to do operations that the browser would otherwise not be permitted to do

The TACTIC Client API can access server functionality through the TacticServerStub in the same manner as its Python equivalent.
Note the similarities in code structure in the following example:

Python code:
server = TacticServerStub.get ()
snapshot = server.checkin (search_key, context, path, mode="upload")

print snapshot.get ("code")

Javascript code:

var server = TacticServerStub.get();
var snapshot = server.checkin (search_key, context, path, {mode: "upload"});
alert (snapshot.code)

There are a few differences due to the syntax of the two different languages. Keyword arguments are not natively supported by
Javascript. Since some of the functions in the server stub have numerous arguments, it is desirable to only use those that are
needed without having to "fill in" all of the preceding arguments with nulls.

For example, the previous Javascript code would have to read like the above:

server.checkin (search_key, context, path, null, null, null, null, "upload")

In general, a given function will have a few necessary arguments and all "optional" arguments are given in a kwargs dictionary.
Another difference is that the sobjects returned are Javascript "objects" whose members are values from the database. Attributes
can be accessed in two ways:

1. code = snapshot[code]
2. code = snapshot.code
The most convenient method to test and implement the Javascript examples is in the TACTIC Script Editor. This can be conve-

nient accesses by pressing the "9" hot key to bring it up. Alternatively, the TACTIC Script Editor can be brought up under the
gear menu under: Tools — TACTIC Script Editor.

This is a simple "Hello World" example.

TACTIC Developer 21/99

<html>
<hl>Hello World</hl>
</html>

The XML document embeds an HTML tag that will be used to layout elements in the application.
The simplest way to view this is to open up the TACTIC Script Editor and input the following code:

var html = "<html><hl>Hello World</hl></html.>";
var kwargs = {
"html’ : html
}i
spt.panel.load_popup ('Hello’, ’'tactic.ui.panel.CustomLayoutWdg’, kwargs);

// NOTE: this should be:
// spt.api.load_popup(’Hello’, ’'tactic.ui.panel.CustomLayoutWdg’, kwargs);

This previous code is completely in Javascript, however, layout pages using strings in Javascript rapidly becomes unwieldy. It is
thus preferential to create these layouts using the widget config. This is done by going to the side bar and going to Project Admin
— Widget Config. This will open up the "widget_config" table. This table is used to store all custom interface configurations
for widgets.

Create a new entry by pressing the [+] button on the right side. Input the following into the config*field and for *view input
exampleOl .<config> <exampleO1> <html> <h1>Hello World</h1> </html> </exampleO1> </config>

This is the full XML document describing the widget config. Note that the HTML is now embedded within that XML document.
This will be important to know later when behaviors and elements are added to the widget.

Finally, in the TACTIC Script Editor, enter the following:

kwargs = {
view: ’'example0Ol’
bi
spt.panel.load_popup (' Example0l’, ’"tactic.ui.panel.CustomLayoutWdg’, kwargs);

The following will appear when you click on "Run" in the TACTIC Script Editor the script above:

Hello B E

Add a new entry to the widget_config table with view = example02 and with the following config definition.<config> <ex-
ample02> <html> This is a button: <input type=button class=buttonl value=Press Me/> </html> <behavior
class=buttonl>{ "type": "click_up", "cbjs_action": ’ alert(Hello World); ’ }</behavior> </example02> </config>

In this example, an HTML button is added to the HTML layout. By default, a button doesn’t do anything when it is clicked. A
behavior has to be added for something to happen. TACTIC behaviors are added to DOM elements by their class attributes.

When the button is clicked (corresponding to the "click_up" event type), the Javascript in the "cbjs_action" attribute is executed.
This example will alert a "Hello World" message on clicking.

The following example will add a text area to the interface as well as extract information from that text area once the button has
been clicked.

<?xml version=’1.0" encoding='UTF-8'’7?>
<!—— This examples displays some html UI and then reacts to it using the TACTIC
behavior system —-->

TACTIC Developer 22/99

<config>

<example03>

<html>

<div class='spt_top’>
<textarea name=’description’ class='spt_input’></textarea>
<input type=’button’ class=’spt_buttonl’ value='Press Me’ />

</div>

</html>

<behavior class='spt_buttonl’>{
"type": "click_up",
"cbijs_action": "'’
var top = bvr.src_el.getParent (' .spt_top’);
var values = spt.api.Utility.get_input_values (top);
var description = values.description;
alert (" You entered: ’ + description);

rrr

}</behavior>

</example03>
</config>

Note that currently, get_input_values() requires that every input element have class=spt_input attribute. Future versions may
remove this requirement, but currently this is necessary.

Please note that when an API for 2.6/2.7, the following lines will be changed:

The following line:

var values = spt.api.Utility.get_input_values (top);
will be replace by:

var values = spt.api.get_input_values (top);

The following line:

var top = bvr.src_el.getParent (' .spt_top’);

will be replaced by:

var top = spt.api.get_parent (bvr.src_el, ".spt_top");

The behavior definition warrants a closer examination:

<behavior class=’'spt_buttonl’>{
"type": "click_up",
"cbijs_action": "'’
var top = bvr.src_el.getParent (' .spt_top’);
var values = spt.api.Utility.get_input_values (top);
var description = values.description;
alert (" You entered: ’ + description);

rrr

}</behavior>

First, there is an implied bvr object that exists in the namespace of the behavior. This bvr objects contains useful data for the
purposes of executing behaviors. The most important attribute is "bvr.src_el". This element is the source element that called the
event. This element can be used as a starting point to navigate the DOM to search for elements.var top = bvr.src_el.getParent(.spz_top);

It is common practice to find a top level element of a widget from the source element. This top element is a starting point from
which searches under a DOM hierarchy can be made. By starting from a top element, it is ensured that the returned values are
isolated to that single widget.

The next line gets all of the values of all of the input elements under the top element.var values = spt.api.Utility.get_input_values(top);
This returns a dictionary of name/value pairs of all of the input elements underneath the top element.

By adding expressions to a report, it becomes very easy to create reports that extract important information and combine it into
a single view.

TACTIC Developer 23/99

<?xml version=1.0 encoding=UTF-8?> <config> <example04> <html> <h1>My login is [expr]$LOGIN[expr]</h1> <table>
<tr><td>Number of tasks</td><td>[expr] @ COUNT(sthpw/task)[/expr]</td></tr> <tr><td>Number of checkins</td><td>[expr] @ COU
<tr><td>Number of model checkins</td> <td>[expr] @ COUNT (sthpw/snapshot[context,model])[/expr]</td> </tr> </table> </htmI>
</example04> </config>

Expression can be added into the html code by inserting it between [expr][/expr] tags. The expression will be evaluated and the
result will be replaced into the html. This provides an ability to layout an arbitrary layout in javascript and then fill in the missing
data with expressions. The full power of the TACTIC expression language is available. Please refer to the expression language
reference for more information on the expression language.

The CustomLayoutWdg can make use of the Mako templating engine to create dynamic content. Mako is a powerful templating
system similar in concept to PHP, but instead uses the Python programming language. The expression language on its own is
quite powerful, but it is still and expression lanaguage and sometimes, it is necessary to have full programming logic. Mako
provides a path to create content that is too complex for the expression alnaguage to handle alone.

The following example shows a report generated with the help of Mako:<?xml version=1.0 encoding=UTF-8?7> <!-- Simple
test using mako templating -— <config> <example06 include_mako=true> <html> <div> <![CDATA[<% # get some data
total = 0 for ctx in [model, texture, rig]: num_snapshots = server.eval("@COUNT (sthpw/snapshot[context,%s])" % ctx) con-
text.write("Number of %s checkins: %s
" % (ctx, num_snapshots)) total += num_snapshots %> Total number of tasks:
${total }
]]> </div> </html> </example06> </config>

Mako is not enabled by default. This must done with with the "include_make" attribute:<example06 include_mako=true>

All code between <% and %> tags are parsed as python code and executed on the server. In order to write out to the html, Mako
uses the context.write() method. This is important to note because the "context" is a reserved word in Mako. This can cause a
confusing error because context is a common variable name when programming in TACTIC.

context.write ("Number of %s checkins: %$s
" % (ctx, num_snapshots))

The python code with the python block can still make use of the entire TACTIC Client API through the use of a builtin variable
"server". This also means that expressions can be acccesed here as well:num_snapshots = server.eval(" @ COUNT(sthpw/snapshot[contex
% ctx)

Also note that the entire Mako code is wrapped around an XML CDATA block (<![CDATA[...]]>). This is because python
code very easily breaks XML integrity rules. The CDATA block allows for any special characters to be entered in the XML
document. It is good practice to add the CDATA tags in order to avoid errors later on.

Any variables that are declared in python blocks can be accessed outside of the python blocks using the ${var} syntax. The
following will replace ${total} with the corresponding variable defined in the python block.

Total number of tasks: ${total}

Combining the expression language with Mako Templating provides unlimited flexibility in creating complex reports.

The CustomLayoutWdg can be used inside of a table element. This makes it easy to create arbiraritly complex table ele-

ments within a standard TACTIC table layout widget. The following displays the number of tasks for the row sobject.<config>
<my_view> <element name=num_tasks> <display class=tactic.ui.panel. CustomLayoutWdg> <html> <div class=top> [expr] @ COU
tasks </div> </html> <behavior>{ type: load, cbjs_action: ’ var search_key = bvr.kwargs.search_key; alert(search_key) ’
}</behavior> </display> </element> </my_view> </config>

This element behaves just like the previous CustomLayoutWdg, however there are a few additions. There is a starting sobject
that corresponds to the table row that is passed in and is used as the starting sobject for all expressions. The following expression
finds the number of tasks for the sobject in question and not all of the tasks in the system.[expr] @ COUNT(sthpw/task)[/expr]
tasks

Another addition is that callbacks have the search key of the sobject for the row available through the bvr object passed into the
behvaior callback.var search_key = bvr.kwargs.search_key;

With the search key, it becomes possible to use the client API to change data or checkin files for that specific sobject.

It is often necessary to be able to interact with the server using Javascript in a behavior callback. This is done using the Javascript
implementation of the TACTIC Client API

The following example illustrates how to interact with the server using the TacticServerStub object. This object is used to issue
commands that will be run on the server such as updating data in the database or checking in files.

TACTIC Developer 24 /99

First, add any image in "C:/Temp/test.jpg"

<Mxml version=1.0 encoding=UTF-8?7> <config> <example04> <html> <div class=spt_top> <textarea name=description class=spt_inpu
<input type=button class=spt_buttonl value=Press Me/> </div> </html> <behavior class=spt_buttonI>{ "type": "click_up",
"cbjs_action": ’ var top = bvr.src_el.getParent(.spt_top); var values = spt.api.Utility.get_input_values(top); var description =
values.description; var applet = spt.Applet.get(); var paths = applet.open_file_browser("C:/Temp"); var path = paths[0]; var
search_key = bvr.kwargs.search_key(); var server = TacticServerStub.get(); server.checkin(search_key, "icon", path, {descrip-

tion: description}); ~ }</behavior> </example04> </config>

The applet is used to interact with the client machine. It defines a number of useful methods such as listing directories, moving
and copying files, uploading and downloading files. For a complete list of the functionality present in the applet, please refer to
the Applet Reference manual. In this case, the example is using the applet to open up a file browser so the user can select a file.

var applet = spt.Applet.get();
var paths = applet.open_file_browser ("C:/Temp");
var path = paths[0];

The search key can be obtained from the behavior. This will be required to check into the correct sobject.var search_key =
bvr.kwargs.search_key();

Once a file path has been selected, the server stub is used to check in the file to the server.var server = TacticServerStub.get();
server.checkin(search_key, "icon", path, {description: description});

Generally, it is not desirable to show a full interface for the checking directly in the table cell. It is much cleaner to have a simple
publish button that will open up the interface in a pop-up.

Many widgets are defined on the server side. These can be integrated in a custom interface by using the TACTIC specific <ele-
ment> tag in the html definition of a CustomLayoutWdg.<config> <examplel 1> <html> <h1>This is a list of users</h1> <ele-

ment name=users/> </html> <element name=users> <display class=tactic.ui.panel. TableLayoutWdg> <search_type>sthpw/login</searc
<view>table</view> </display> </element> </examplel 1> </config>

2.7 Performance

The TACTIC Client API interacts with teh server through an XMLRPC connection. This has a number of advantages and
disadvantages that the developer should be aware of when programming the Client API. XMLRPC is a standard web sevice
protocol built on top of HTTP. This means that the protocol is stateless. It also means that it requires an HTTP request for every
interaction.

HTTP requests are very slow when compared to running code directly on the server, so care must be taken to minimize the
number of interactions that occur between the client code and the server code. However, if a client side application is written
with a few basic best practice guidelines, performance issues should not be a problem.

The TACTIC server should be treated as a special resource. The more client side processing you do, the lower the load on the
server and the more scalable your client side application.

If possible, it is always preferable to pool queries into a single request with the use of proper filters: Unfortunately, this sometime
sacrifices pure Object Oriented elegance, but it is a tradeoff that is well worth it in practice. For example, an object oriented
approach to aquiring data would be:

shots = server.query ("prod/shot", filters=[[’sequence_code’: "XG’']])
for shot in shots:
tasks = server.get_all children(shot.get (’/__search_key_ '), ’sthpw/task’)

When using this approach, a call to the server will be made for every shot. While, in principle, this will work, it could potentially
be quire slow. A faster way to do this would be to get all of the tasks for all of the shots in a single statement:

shots = server.query ("prod/shot", filters=[[’sequence_code’: "XG']])
shot_keys = [shot.get (’__search_key__’) for shot in shots)
tasks = server.get_all_ children(shot_keys, ’sthpw/task’)

This will get all of the tasks for all of the shots in one call to the server. Of course, some extra processing is required to relate the
retrived tasks to the shot, however, this is all done on the client side and is executed very quickly.

TACTIC Developer 25/99

tasks_dict = {}
for task in tasks:
parent_key = task.get ('__parent_key_ ")
task_list = tasks_dict.get (parent_key)
if not task_list:
task_list = []
task_dict[’parent_key’) = task_list
tasks_list.append(task)

Creating this dictionary will enable rapid look up of the tasks for each shot.
Of course, this is done for you by providing the "return_mode" flag.

tasks = server.get_all_children(shot_keys, ’sthpw/task’, return_mode=’dict’)

By default, the return mode is "list", which just returns a flat list allow you to restructure as desired.
This applies to the more general "query" method:

tasks = server.query ("sthpw/task")

2.8 Navigating Search Type Hierarchy

Hierarchies

Each project in TACTIC contains a collection of search types. The schema defines how these search types are related to each
other. There is a wide variety of possible ways that two search types can be related to each other. The schema abstracts these
relationships so that it is easy to navigate through these hierarchies.

The following relationship types are used:

e parent_code: The column named "parent_code" is used to define the parent code. You would need to look at the schema
definition to know the exact search_type of each parent. This relationship type has the advantage that it standardizes the name
of the parent column.

* sobject_code: A naming convention of <parent_table>_code is used to define the parent code. SObjects reference each other
through the "code" column, which is guaranteed to be unique. (The code column is used instead of "id" because it is easier to
read.) This is a more intuitive relationship type than "parent_code".

 search_type: The parent code is defined by an arbitrary relationship using two columns: search_type and search_id. Together,
they uniquely identify parent SObjects.

» search_key: The parent code is defined by a single column called "search_key," which contains a unique identifier for the
parent.

Of the above types, sobject_code and search_type are used most often. Any of these types can be used at any time and be related
to each other. Having an intimate knowledge of these relationships can be confusing, so to keep things organized a project
schema is used to define which search_types can be related to other search_types and in which ways. In other words, TACTIC
uses the schema definition for the project to abstract relationships and make them easier to understand.

Methods
get_parent()
There are a number of methods to help navigate through the search type hierarchy.

Every search type can have a single parent type. You can query this type with get_parent_type(). For example, to find the parent
type of a "prod/asset":

search_type = "prod/asset"
parent_type = server.get_parent_type (search_type)
print parent_type

TACTIC Developer 26 /99

When executed, the above code snippet would return the string "prod/asset_library".
get_child_types()

When the parent/child relationship is search_type or search_key, each SObject will have its own parent. In this case, the parent
would return "*", which indicates that all search types are a possible parent.

To find child types, use the get_child_types() function. This function returns a list because a search_type can and will have a
number of search types as children. This method will return all of the possible search types.

get_parent()

Most search_types will only have one parent type (except those that defer the parentage to the SObject itself). The get_parent()
method allows you to obtain the individual parent SObject of an SObject.

search_type = "prod/asset"

code = "vehicleO1l1"

search_key = server.build_search_key(search_type, code)
parent = server.get_parent (search_key)

print parent.get (' code’)

Executing the above code snippet would result in the output:

vehicles

because the parent type of "prod/asset” is "prod/asset_library" and the parent of "vehicleO11" is the asset library "vehicles"
get_all_children()

Search types can and will have a number of child types. Some types defer the parentage to the SObject itself to determine the
parent type. So when searching for children of parents, it is necessary to pass in a child type to narrow down the search. The
options for child types can be found by the method get_child_types().

search_type = "prod/asset_library"

code = "vehicles"

search_key = server.build_search_key (search_type, code)
child_type = "prod/asset"

children = server.get_all_children (search_key, child_type)
for child in children:
print child.get (' code’)

This code snippet will print out all of the codes of the children of this particular asset library, namely all of the assets in the asset
library "vehicles."

get_all_children() can also be used to get snapshots (sthpw/snapshot) or tasks (sthpw/task) as well. These are special child types
that defer the parent type to the individual SObjects.

search_type = ’'prod/asset’
code = ’'vehicleOll’
search_key = seaver.build_search_key (search_type, code)

child_type = ’sthpw/task’
tasks = server.get_all_children (search_key, child_type)

This code snippet will obtain all of the tasks associated with vehicleO11.

3 Changes

3.1 Search ID to Search Code

A change made in TACTIC 4.0 is the use of search code instead of search id when relating sObjects to their snapshots (or
checkins). Until 4.0, the search id was being used to maintain this relation. Now, if you look at the code column of a sObject and

TACTIC Developer 27 /99

the search code column of a snapshot checked in to this sObject, you will find that both have the same value. This tells TACTIC
that the snapshot is associated with this sObject.

Froject Startup test 3 | Snapshot E

2 Q-8 i = | L L i 3 m o=, 7 |

O[] teant & = No notes. Click io add. - YORTESTO0002

Project Startup test Snapshot J

2 B it o | 208 items found Q u - | i-_)

[Preview Locked Files Context Ver# Rev# Login I I Current Latest Search Code
L] «["] publish Voo 0 admin Apr30,2013-19:07 No description & & YOBTEST00002

The reason for this change was merging issues between multiple tables of snapshots. When using search id to merge between
tables, there were many discrepancies which could not have been easily solved. Using search code to merge tables is a much
easier process. There are also other reasons which are not very important.

4 Custom Widgets

4.1 Custom Layout Editor

Custom Layout Editor I ;I

HTML] Python Styles Behaviors Options Files
HTML:
= &
= (Limage]
(a-13 1 | edivs
B 2 |<2
3 | table = []
==] 4 | table.append("<table id="metadata format' cellpadding="4px'>")
o) 5/|i=0
6 | for name, value in data.items():
a2} 7 i=i+1
2] 8 if (1 % 2 == 0):
9 table.append ("<tr style='"backgrcund: #BBB'>")
= 10 slae:
= 11 table.append ("<tr style="backgrcund: #DDD'>")
o) 12
13 table.append("<td style='width: 1l00px'">%s</td>" % name)
m- 14 table.append ("<td>%s</td>" % wvalue)
B - 15 table.append ("</tI>")
16
= 17 | table.append ("</table>")
[a2] 18 | table = "".join(table)
= 19
20 | context.write (table)
21 (%>
22 |<fdiv>

What the Custom Layout Editor Provides

The Custom Layout Editor allows you to have complete control over the look and feel of TACTIC using many of the standard
web technologies (HTML, CSS and Javascript). With this tool, you can build your own TACTIC components (called widgets)
that have the ability to interact with one another intelligently, making it easier for you to design your very own TACTIC interface.

HTML

Custom Layouts enable the laying out of custom widgets using standard HTML.

Element Tag

TACTIC Custom Layout introduces a new html tag <element> which lets TACTIC widgets to be embedded into HTML.

TACTIC Developer 28/99

There are two formats for a TACTIC element: a short form and a long form:
short form:

<element view=’forms/my_form’ />

long form:

<element>
<display class='tactic.ui.panel.CustomLayoutWdg’ >
<view>forms/my_form</view>
</display>
</element>

This ability to reference other views and elements makes it easy to keep a top level view that draws from other views.
For display class names of other widgets, see section on Common Widgets.

Styles

You can create styles for each view in the Styles tab. However, most of the time it will be useful to reference a central stylesheet
for a number of views.

In order to include a top level stylesheet, you can create an empty view with only styles defined and include these styles into
other top level views, just as how you would reference a normal view.

For example, you can create a view called common/styles and add this line to the HTML of a view where you want the styles to
appear.

<element view=’common/styles’ />

Behaviors
TACTIC’s behavior system makes use of standard JavaScript behaviors with the added functionality of some built-in classes.
Here are two ways to add an alert behavior to a button class called my_button.

<behavior class="my_button” event=’click_up’>
alert ("Hello World’);
</behavior>

<behavior class="my_button’>{
"type’: ’'click_up’,
"cbjs_action’: "’

alert ('Hello World’);

nrs

}</behavior>

Here are the types of events that the TACTIC behavior system has built-in support for:

click_up | click | wheel | double_click | drag | hover | move | change | blur | mouseover | ¢
mouseout | keyup | keydown | listen

You can set the behavior class to activate upon the firing of another event using the listen type event.

<behavior class="my_button’>{

"type’: 'click_up’, ’'cbjs_action’: "’
spt.named_events.fire_event (‘my_event_trigger’); "’
}</behavior>

<behavior class="my_class’>{
"type’: ’listen’,
"event_name’: 'my_event_trigger’,

TACTIC Developer 29/99

"cbjs_action’: "’

alert ('Hello World’);

nrs

}</behavior>

When the behavior is applicable to a specific HTML element (eg. click, click_up, mouseover, etc.), you can get element for
which the behavior originated from using the bvr.src_el (Behavior Source Element) tag.

var table = bvr.src_el.getParent (' .my_table’);
var cells = table.getElements ('’ .my_cells’);
cells.setStyle ('background’, ’red’);

TACTIC’s powerful framework comes with many API functions that make developing for TACTIC easier. Here are some
common ones.

Show loading popup:

spt.app_busy.show ('’ Saving data...’)

Hide loading popup:

spt.app_busy.hide ()

Load an element:

spt.panel.load(element_name, class_name, kwargs)

Load an element into a popup:

spt.panel.load_popup (element_name, class_name, kwargs)

Close a popup:

spt.popup.close (popup_element)

Options

The Custom Layout Editor’s Options tab incorporates the administrative ability of modifying column, theme, view and table
definitions with the ability of creating these widgets. Various views, themes, columns and tables can be created in the Custom
Layout Editor with the desired content and appearance.

Options of these custom features can be defined in the Options tab, similar to how a predefined column or Column Manager
custom column is modified through the Edit Column Definition window. These options can be set to change widget appearances,
functions and behaviours, often in addition to any options established in the HTML and Python tabs. Many of the same options
provided in the Edit Definition window are available and can be used to customize created features.

The custom feature options are set through the use of Python in the Options tab. A variety of different examples written in Python
have been shown below. They are structured exactly as they would need to be defined in the Options tab with all possible subsets
to refine a particular option.

Option Tab Examples

"mode": {
"description’: "Determines whether to draw with widgets or just use the raw data",
"type’: ’SelectWdg’,
"values’: 'widget |raw’,
"order’: 00,
"category’: 'Required’
}I
"search_type": {
"description’: "search type that this panels works with",

TACTIC Developer 30/99

"type’: ’'TextWdg’,
"order’: 01,
"category’: 'Required’
}I
"expression’ : {
"description’: ’"Use an expression to drive the search. The expression must return <=
sObjects e.g. @SOBJECT (sthpw/task)’,
"category’: ’Display’,
"type’: 'TextAreaWdg’,
"order’: '01’
}I
"element_names": {
"description’: "Comma delimited list of elemnent to view",
"type’: TextWdg’,
"order’: O,
"category’: 'Optional’

Customized options are also available to the user which offer additional flexibility when modifying custom features. Some
examples have been provided below.

Option Tab Custom Option Examples
{

"basic_option’: ’You can describe your option here’,
"advanced_option’: { ’'description’ : ’'You can describe your option here and in type <>
specify what type of edit widget is used to display the option.’,
"category’: ’'Display’,
"type’ : ' TextWdg’

Images

Images can be checked into TACTIC and used in interface design. In the Files tab, you can check in images using the Check-in
wizard.

Once the file is checked in, you use the web path as the URL of the image.
Python

TACTIC integrates the efficiency of Python in a Custom Layout Editor tab, functioning together seamlessly with HTML, CSS
and JavaScript. As can be seen in the example below, Python works in connection with these other languages to produce a desired
output.

Example
HTML code in Custom Layout Editor HTML tab:

<div class="hello_world">
Hello World
</div>

CSS code in Custom Layout Editor Styles tab:

.hello_world {
font-size: 2em;
padding: 1lpx;
border: solid 1lpx black;
background: ${background};

Python code in Custom Layout Editor Python tab:

background = "#FO0O0O"

TACTIC Developer 31/99

Custom Layout Editor Test Output:

The example demonstrates the use of Python in the creation of a title block. Essentially, the Python coding is only setting the
background color of the title block. However, it can be used for more complicated applications, as in the Testing Interface section.

The Python tab provides the user with the opportunity to use the Python language in the editor without the restriction of having to
explicitly use embedded Mako, which is another TACTIC feature that is described in the following section. The dedicated Python
tab is an implicit integration of Mako. Both Mako and the Python tab essentially use Mako templating, while both providing
equivalent Python utility and efficiency.

Mako

The custom layout engine embeds the Mako, a powerful templating engine which allows you to embed Python scripts and logic
within HTML. In order to embed Python coding within the HTML, the code must be surrounded by the special Mako tag: <%
{Python Code} %>. Here is a simple example of its usage:

<div>

<%

my_car = 'A ferrari’
%>

</div>
<p>S${my_car}</p>

Mako makes passing and accessing of data in TACTIC easy, especially combined with the support of XML by TACTIC widgets
for passing arguments.

The kwargs.get function can be used to get the value of an XML attribute of an element, whether it is an attribute already
supported by the element or an arbitrary one. Here is an example of setting a value for an arbitrary attribute.

HTML code in top level view:

<element>
<display class='tactic.ui.panel.CustomLayoutWdg’ >
<view>my_forms.photoshoot_form</view>
<args>Hello</args>
</display>
</element>

HTML code in a view named my_forms.photoshoot_form:

<element>
<display class=’tactic.ui.input.TextInputWdg’ >
<default>${kwargs.get ("args") }</default>
</display>
</element>

For the example above, the text field will be populated with the string Hello.

Most of the time, it will be beneficial to use Mako to pass search keys from one view to another. That’s covered in a bit more
detail in the Creating Forms section of this document.

Injecting Widgets

You can inject your custom widgets or TACTIC built-in widgets into your view through the user interface. You can do it through
the gear menu:

TACTIC Developer 32/99

Add Login Template

Add Raw Menu Template
Add Menu Template

Add Side Bar Template

Inject Widget

Inject Thumbnail

Inject Video

Inject Text Input

Inject Look Ahead Text Input
Inject Layout

Inject Table

Inject Calendar

Inject Search

Inject Subscriptions.

Repeat Last Test

All these injection options allow you to inject the widget you want directly where your cursor is in the code. All these injections
have the name field in common. The name field allows you to name your widget in case you want to refer to it later in the code.

Inject Widget allows you to inject any widget you want. You need to define which widget to inject. You can select your widget
through the dropdown or select classpath and write the class path of a built-in TACTIC widget. After selecting, a built-in widget,
you may have to fill in additional arguments which are required to successfully run the widget.

Widget Editor (=]

Mame:

Widget: — Class Path— El

Class Mame:

Similarly, you can inject a thumbnail, video, table, calendar, etc. and customize the options respectively. The more popular
widgets have been added for your convenience to the gear menu. They are listed below.

Inject Thumbnail injects a thumbnail widget.

Inject Video injects a video.

Inject Text Input injects the text input field widget. You can specify many options like the width of the input field.
Inject Look Ahead Text Input is similar except there is a look ahead which comes with the input field.

Inject Layout injects a View Panel Widget.

Inject Table injects a Fast Table Layout Widget.

Inject Calendar injects a Calendar Widget.

Inject Search injects a Global Search Widget.

Inject Subscription injects a Subscription Bar Widget into your HTML.

Adding View to sidebar

TACTIC Developer 33/99

Custom Layout Editor

% E @ = - L=+ BVIL | com/test/assets_in_review]

I HTML Add Login Template Behaviors Options Files
Add Raw Menu Template
Add Menu Template
Add Sidebar Template

<div claf Inject Widget
<div> Inject Thumbnail
Inject Text Input
Inject Look Ahead Text Input
Inject Layout
Inject Table
<t Inject Calendar

Add to Side Bar dedia in Review
Set as Project Url
Add as Custom Url

Show Custom URLs

Repeat Last Test style="min-height: 200px">
T <tEble class="media_in_review">
<tr>
<td>Notes</td>
<td>Description</td>
<td>Code</td>
<td>Name</td>
</tr>
</table>
</div>
</ftd>
</tr>
<tr>
<td>

You can add the view you have created directly to the sidebar. To do this, click on the gear in the top menu and select “Add to
Side Bar”. This will add this view to the sidebar under the Project Views. By default, It will get named according to the view
name and “/” will be treated as a space. For example, “app/chart” will be named “App Chart”. You can always rename these
views in the sidebar by right clicking on them and selecting “Edit Side Bar”. Now select the view you want to edit and change
the Title field.

Creating URLSs

When you startup tactic and go to the main project URL (... /tactic/<project_name>), you are presented with the tactic homepage
of the project. That tactic homepage URL can be changed to show one of your created views. To do this, open up your
view in the custom layout editor, then from the gear menu select “Set as Project Url”. The current view you have open will
be shown when you go the main project URL. You can come back to admin side of tactic by adding “/admin” to the URL
(... /tactic/<project_name>/admin).

You can also turn your view into a custom URL. This means that your view will open when you go to a specific URL. To do this,
open your view in the custom layout editor, then from the gear menu select “Add as Custom Url”. This will open up a dialog
box where you can specify what URL should open up the view. The URL specified there is showing the URL which is appended
to (.../tactic). You can specify which widget to run in the URL in the widget field. By default, it shows the widget code for the
view that was open in the custom layout editor. You can check all your custom URLSs by going to the gear menu and selecting
“Show Custom URLSs”. This will show all the existing custom URLSs. This is where you can delete existing custom URLs.

Creating Forms

Forms provide an interface for updating TACTIC data. The Custom Layout Editor makes the creation of forms easy with built-in
widgets and functions.

TACTIC already has some predefined input widgets that can be used as input fields for forms, and they are referenced like any
other widget.

TextInputWdg
SelectWdg
TextAreaWdg
CalendarInputWdg
ActionButtonWdg

TACTIC Developer 34/99

<element name='my_text_input_field’>
<display class=’tactic.ui.input.TextInputWdg’ >
<default>Hello</default>
<width>100px</width>
</display>
</element>

You can find more details on the exact XML attributes that are supported by each widget in the Common Widgets section.
Here are some useful functions for generating forms.

spt.api.get_input_values (div_container)

This gets the values of the all the input fields of a div as an array with the attributes being the names of the element names.

server.update (search_key, data)

This updates an sobject with data that is passed in as an array.
The search key is a key that uniquely identifies an sobject.
Here is an example of usage of both for updating a TACTIC task through a form.

In this example, the search key of an sobject is passed into the view through a list of keyword arguments, and it is kept as a
hidden input for ease of access. The clicking of the save button activates the behavior for saving the form.

HTML: <div class=’'spt_form’>
<input type="hidden" name="spt_search_key" value="${kwargs.get (' search_key’)}"/>
<element name=’spt_status’>
<display class=’SelectWdg’>
<values>Assigned|Pending|Approved|Waiting</values>
<search_key>${kwargs.get ("search_key") }</search_key>
</display>
</element>

<input type="button" class="spt_save_button" value="Save >>"/>
</div>

JavaScript:

<behavior class="spt_save_button> {

"type": "click",

"cbjs_action": 7’
//gets the parent of the behavior source element
var top = bvr.src_el.getParent (' .spt_form’);

//gets all the input values
var values = spt.api.get_input_values (top);

var data = {
//gets value of element named ’spt_status’
//sets it as the value of the ’status’ column for the task sobject
status: values.spt_status;

search_key = values.spt_search_key;
server.update (search_key, data) ’'’

Testing Interface

You can customize your views to behave during a testing phase. To do this, you can add a condition in your code to check
whether the code is being run in testing mode. You can use the following condition in the python section of the code:

TACTIC Developer 35/99

if kwargs.get ("is_test") in [True, ’'true’]:

This condition will be true if it is testing mode. You can now use this condition to setup your variables correctly. You can run the
view in testing mode by clicking the test button in the top menu.

296 *’“D @ View: |adove/phovoshop/main Types [wiget [+

In addition, these custom views can also be defined to take the form of a specific view type: widget, column, chart, report or
dashboard.

Widget is a free form view type. It is designed to allow your view to be versatile in its presentation in TACTIC. These widget
type views can appear in stand-alone pop-up windows, tab view layouts, forms, tables, text inputs, menus, or even buttons. An
extension of this versatility lies in their ability to be injected into other custom views as well, much like what was described in
the Injecting Widgets section.

Column allows for the customization of a table column. This column is available to be added to any table through the Column
Manager under Plugin Widgets. The ability to modify the aesthetics and data presentation of a column will allow the user to
display the data they want in a specific format. For example, if metadata for a particular asset, such as an image, needs to be
shown in a table, a column can be formatted to list the metadata information through the use of an embedded table, as shown
below. Other formatting techniques, like alternating row colors, can be added as well.

Example
HTML code in HTML Custom Layout tab:

<div>
<%
table = []
table.append ("<table cellpadding='4px’>")
i=20
for name, value in data.items{():
i=1+1
if (1 & 2 == 0):
table.append ("<tr style=’background: #BBB’>")
else:
table.append ("<tr style=’background: #DDD’>")

table.append ("<td style=’width: 100px’>%s</td>" % name)
table.append ("<td>%$s</td>" % value)
table.append ("</tr>")

table.append ("</table>")
table = "".join (table)

context.write (table)
%>
</div>

Python code in Custom Layout Python tab:

data = {
"Frame Size:’: "768 x 512",
"Colorspace:’: "yuvjd4z20p",
"Location:’: "C:\...\",
"File Type:’: "MJPEG (Motion JPEG)",

Output Column in Table:

Chart, report and dashboard view types present the ability to create customized charts, reports and dashboards that are easily
accessible to users. Custom views can be defined to present data in the form of line charts, budgeting reports or department
specific dashboards that display tables or views that are commonly used by that department.

TACTIC Developer 36/99

However, only by specifying the view type do these views become easily accessible to users. For example, by setting a custom
layout view to Chart, in the Examples section under Project Configuration, this custom view will be added to the list of charts
that are already available. By selecting the drop down arrow menu on the created chart icon, there is an option to "Add to Side
Bar". This will add this chart view to the side bar for easy accessibility, under a defined "Chart" section.

In addition, if a custom theme is created and utilizes sidebar views and associated links in the menu, this new chart view will be
automatically added in the menu of theme.

To begin a custom chart, report or dashboard, going to the Examples section under the Project Configuration is a good place
to establish a base to build one of these customized tools. For example, by selecting Dashboards in the Examples section, a
selection of different sample dashboards will be displayed. If one of the dashboards is of particular interest, but requires some
modification, by going to the arrow drop down menu on the dashboard icon and selecting "Show Definition", the definition can
be copied and pasted in the Custom Layout Editor and modified to the desired appearance.

Tips and Techniques:
Handling None

The default value for the empty string in Python is the word "None". This does not help very much when you want to obtain
something like the search key of an sobject because if there is no search key, instead of getting an empty string, you get the string
"None". And if you try to pass "None" into an element, an error will likely result.

The way to work around that is to add an "or" at the end of your kwargs.get function.

ie: kwargs.get ("search_key") or ""

Embed Elements
A shortcut for embedding elements into the HTML is by clicking on the gear menu.

Similarly, if you would like to inject another view into your current view, you can do so by right clicking on the view you want
to inject.

Element Name as Column of sObject

If you pass a search key into an element, it automatically takes the element name as the column if you do not specify one. In the
example below, the text input will display the id of the sObject with the given search key.

<element name="id">
<display class="tactic.ui.input.TextInputWdg">
<search_key>${search_key}</search_key>
<width>100px</width>
</display>
</element>

4.2 Widget Development

As of 2.5, all widgets are derived from BaseRefreshWdg. This refresh widget is a new style widget which has some added func-
tionality allowing to to be "smart" enough to refresh itself. It also standardizes the interface for passing construction parameters
to the widget. All new style widgets take kwargs (keyword arguments) as argumets to the constructor

widget = MyWidget (optionl=valuel, option2=value?2)

All new style widgets defined a method called "get_args_keys", which return a dictionary of defined and allowable arguments:

def get_args_keys (my) :
return
"optionl": "this is option #1",
"option2": "this is option #2"

TACTIC Developer 37/99

TACTIC provides the ability to create your own widgets and integrate them seamlessly into the TACTIC interface.
There are 3 main types of widgets:

*Widget:*A widget derived from a the base Widget class is a free standing widget that requires no parent widget.
*Table Element Widget:*An element widget is a widget that needs expected to be put inside a TableLayoutWdg.
*Input Widget:*An input widget is a widget that requires one or more values to put entered or extracted.

Create your own custom widget

You can create your own custom widgets in Tactic that become completely integrated in the user interface.

All widgets are derived from the base Widget (pyasm.web.Widget) class. This class defines the fundamental functionality re-
quired for all widgets that appear in TACTIC. To create your own widget, you can derive off of this class.

Hello World

In order to start showing how custom widgets can be created, we will start with the base "Hello World" widget. Create a folder
called "custom" and then create a new file called "hello_world_wdg.py" in this new folder. In the file add the following lines:

from pyasm web import Widget

class HelloWorldWdg (Widget) :
def get_display (my) :
return "Hello World"

In order for TACTIC to be able to use this class, TACTIC must be able to see this file: this "custom" folder must be either in the
PYTHONPATH or in sys.path of the TACTIC process (you can alternatively, use any class that complies with Python’s module
handling.

Note
You can also use the python_path variable in the TACTIC config file to add paths to the sys.path dictionary

In order to view this widget quickly, you can open up the javascript editory and type:

spt.panel.load("custom.hello_world_wdg.HelloWorldwdg") ;

and press the "Run" button. You should see the following:

CG Production o~

Note that the title does not change. This is something that the link will do automatically.
Formatting the Widget

We could format the widge a litlle more using some basic HTML widgets.

TACTIC Developer 38/99

from pyasm.web import Widget, DivWdg

class HelloWorldWdg2 (Widget) :
def get_display (my) :

top = DivWdg ()
top.add_style
top.add_style
top.add_style
top.add_style
top.add_style
top.add_style

"font-size: 15px")
"margin: 30px")

"padding: 30px")

"width: 150px")
"text-align: center")
"border: solid lpx black")

top.add("Hello World")

return top

Adding this to a file called hello_world_wdg2.py and then in javascript editor, type:

spt.panel.load("custom.hello_world wdg2.HelloWorldwWdg2") ;

Pressing the "Run" button gives:

CG Production o~

My viewre

HTML

Here we introduce the basic HTML widget DivWdg. The add_style() allows you to add arbitrary CSS styles to the widget. There
are various operations that can be added to HTML widgets that are useful for formatting the layout of the page. These methods
include:

¢ set_attr(name, value)
* add_style(name, value)
e add_class(css_class)

* add_event(event, js_action)
There are few useful predefined widgets that sit on top of HtmlElement:

* DivWdg
* SpanWdg
» Table

These are all based of of HtmlElement which are basic html elements and provide a thin layer above HTML. HtmlElement also
defines a number of static constructors to address most HTML elements:

TACTIC Developer

39/99

e HtmlElement.br()
 HtmlElement.p()
¢ HtmlElement.br()

These return variations of HtmlElement that represent the different HTML elements. These are useful for laying out a complex

widget. All HTML elements and their properties are accessible from these.
Using other widgets
You can add other predefined widget, for example, the CalendarWdg

from pyasm.web import Widget, DivWdg
from tactic.ui.widget import CalendarWdg

class HelloWorldWdg3 (Widget) :
def get_display (my) :

top = DivWdg ()

top.add_style

top.add_style ("margin: 30px")

top.add_style ("padding: 30px")

("font-size: 15px")
(
(
top.add_style ("width: 200px")
(
(

top.add_style ("text-align: center")
top.add_style ("border: solid lpx black")
top.add("Hello World")

calendar = CalendarWdg ()
top.add(calendar)

return top

Adding this to a file called hello_world_wdg3.py and then in javascript editor, type:

spt.panel.load("custom.hello_world wdg3.HelloWorldWdg3") ;

Pressing the "Run" button gives:
CG Production o~

Libr.

Novembe
S5u Mo Tu

1 o

This adds one of the predefined widget "CalendarWdg". Widgets are hierarchical and can be added to other widgets. Any widget
can embed any other widget within it’s display. This provides a very flexible archictecure for building up complex hierarchical

widgets.

TACTIC Developer 40/99

Create your own table element widget

There is a special class of widgets that are designed to be used in conjuntion with TableLayoutWdg, the primary widget used
for laying out tabular data. These widgets should be derived from BaseTableElementWdg, which extends the basic Widget class
with a number of specific methods.

The TableLayoutWdg uses it’s child widgets slightly differently than most widgets. It creates a single widget for each column
and calls the get_display() method repeatedly for each row; each row representing a single sobject. Each element widgets does
have knowledge of all of the sobjects, however, for each row, there will be a current sobject set. This means that the widgets
get_display() method will be called repeatedly for each row. So, instead of operating on a list of widgets, the table element
widget should get the current widget using the "get_current_widget()" method.

The following is a simple example of a table element widget.

from pyasm.web import DivWdg
from tactic.ui.common import BaseTableElementWdg

class MyElementWdg (BaseTableElementWdg) :
def get_display (my) :

sobject = my.get_current_sobject ()
first_name = sobject.get_value ("first_name")
last_name = sobject.get_value("last_name")
div = DivWdg ()
div.add("%s %s" % (first_name, last_name))
return div

The class is almost identical to a regular class, except that it is derived from BaseTableElementWdg and that it uses get_current_sobject()
to get the current sobject being drawn. This widget still has access to all of the sobjects in all of the rows, through get_sobjects(),
if this is necessary.

To test this, save the code above in a file called my_element_wdg.py and enter this into the javascript editor:

Note

This only works in 2.6: in 2.5, you have to create the view in the widget config table

var config = " \
<config><test> \
<element name='name’> \
<display class='custom.my_element_wdg.MyElementWdg’ /> \
</element> \
</test></config>";

var args = {
"search_type’: ’sthpw/login’,
"view’ : ’"test’,
"config_xml’: config,
"do_search’: ’'true’
}i
spt.panel.load("main_body", "tactic.ui.panel.TableLayoutWdg", args);

Pressing the "Run" button gives:

TACTIC Developer 41/99

CG Production 2t~ System Administrator [char

oi-n H-[o -

Ja ipt Editor
Albert Modeller

Display Name

Your custom table element widget completely integrates within the TACTIC interface. You can add other widgets by expanding
the config definition.

var config = " \
<config><test> \
<element name=’'preview’ /> \
<element name=’name’> \
<display class='custom.my_element_wdg.MyElementWdg’ /> \
</element> \
<element name='email’/> \
</test></config>";

var args = {
"search_type’: ’sthpw/login’,
"view’ : ’'test’,
"config_xml’: config,
"do_search’: ’'true’
}i
spt.panel.load("main_body", "tactic.ui.panel.TableLayoutWdg", args);

This adds a preview and an email column (which are predefined for sthpw/login search type) and appear with your custom widget.

CG Production o~ System Administrator [c

oi-n H-[o -

BaseTableElementWdg

TACTIC Developer 42 /99

This example describes how to create your own BaseTableElementWdg to execute a server-side command. The user can type
some words in the text field, and then click on the "Action" button. The words will be written as the content of a file in the /tmp
folder of the server. In the tactic config file, tactic_linux-conf.xml, let’s say the python_path is /home/apache/custom. You can
create a file called custom_wdg.py and init.py in it.

Input:

Hello 11!

m

Input:
iexample]

m

Here is the content ofinit.py:

from custom_wdg import =*

Here is the content of custom_wdg.py:

__all = ['CustomToolElementWdg’,’CustomCmd’]

from tactic.ui.common import BaseTableElementWdg
from tactic.ui.widget import ActionButtonWdg
from pyasm.web import HtmlElement, SpanWdg

from pyasm.widget import TextWdg

from pyasm.command import Command

class CustomToolElementWdg (BaseTableElementWdg) :
def get_display (my) :

top = DivWdg ()
top.add_class (' spt_custom_tool_top’)
text = TextWdg (’user_input’)

action_button = ActionButtonWdg (title='Action’, tip='Write a file in /tmp based on <+
the data in the text field’)

action_button.add_behavior ({’type’ :’click_up’,
"cbjs_action’: ’'’’var server = TacticServerStub.get();

try {
var top = bvr.src_el.getParent (".spt_custom_tool_top");
var values = spt.api.get_input_values (top, null, false);

this path is assumed importable in your Python environment
server.execute_cmd ('’ custom_wdg.CustomCmd’, values);

}

catch(e) {
alert (spt.exception.handler (e));

}

Ty

top.add (SpanWdg (' Input:’, css=’'small’))
top.add (text)

TACTIC Developer 43 /99

top.add (HtmlElement .br ())
top.add(action_button)

return top
class CustomCmd (Command) :

def execute (my) :
text = my.kwargs.get (‘user_input’)
f = open(’/tmp/my_file.txt’,’w’)
f.write (text)
f.close()

If you click the first "Action" button, a file with "Hello !!!" will be created. On clicking the second "Action" button, the file
content will be replaced with the word "example".

4.3 Widget Architecture

What are Widgets?

Widgets are drawable entities. They have the ability to draw themselves and also have the ability to contain other widgets and
call on their drawing.

Widget Architecture?

The TACTIC interface is entirely built on top of widget architecture. A widget has a drawing mechanism which displays the
widget. Widgets can contain any number of other widgets and pass information to them.

Certain widgets also make use of configuration xml documents in order to configure how they should be drawn. These configs
are useful because they allow very quick and readable configuration of complex widgets. This document can also be stored in
the database as a way of remembering the state of how to redraw a particular widget. This is widely used in TACTIC to store
various parts of the interface in the database.

Every widget has a display method which completely controls how a widget is displayed. This display is recursive as each widget
will call all of it’s children’s display method. In this manner, the entire interface is build up.

Widgets derive data to draw from sobjects. Generally a search is performed to retrieve sobjects which are then used to draw the
widget. The widget itself can perform the search or it can recieve sobjects from some external source.

Widget Config

Numerous widgets use configuration xml documents to help them draw their display. These widgets are considered to be "layout"
widgets in that they generally use the configurations to determine what the child widgets are and how and where they are drawn
within the parent layout widget. The widget config is an xml document which describes the child elements and how they should
be display. The format is defined as follows.

<config>
<VIEW>
<element name=’'NAME’ OPTION='VALUE’>
<display class='CLASS_PATH'’>
<KWARG>VALUE</KWARG>
<KWARG>VALUE</KWARG>
</dispaly>
</element>
<element name=’'NAME’ OPTION=’VALUE’>
<display class='CLASS_PATH'’>
<KWARG>VALUE</KWARG>
<KWARG>VALUE</KWARG>
</dispaly>
</element>
</VIEW>
</config>

Where capitalized words represent variable entries.

TACTIC Developer 44 /99

VIEW The name of a view which encompases a particular
configuration. There can be any number of views in a
configuration documentation

OPTION An option defining a state or setting of this element. This
information does not get passed to the element widget
VALUE A value or a particular argument or options
CLASS_PATH The fully qualified python path of the widget class
KWARG A kwarg that is passed to the class on construction

A simple example of a configuration is as follows:

<config>
<simple>
<element name='email’>
<display class=’custom.MyCustomWdg’ >
<title>My Widget</title>
</display>
</element>
</simple>
</config>

In this case, the "simple" view defines a single element called "email". This element

The configuration document can contain any number of "views". Each "view" can contain any number of elements. Inside each
element, there are xml snippets which represents an xml serialization of a widget. In the example above:

<display class=’custom.MyCustomWdg’ >
<title>My Widget</title>

</display>

translates into python server code as follows:

from custom import MyCustomWdg

widget = MyCustomWdg (title=’'My Widget’)

TACTIC uses this format extensively to serialize widgets to the database. Although any source can be used, the config is most
often defined in the widget config table of a particular project.

There are a couple of layout classes that make heavy use of the widget config.
SideBarWdg:

TableLayoutWdg: this class is the used to display most tabular data in TACTIC. It contains many features to make the display
of tabular data dynamic and flexible. Views can be customized and saved. It is probably the most used layout class in TACTIC.
It makes heavy use of the widget config for its display. It’s importance is sufficient to warrent a section on its own below.

CustomLayoutWdg: this class makes use of a special version of the config. It defines elements, but they are defined within an
html tag, allowing for precise layout of elements using HTML. This allows for very flexible layouts while still being able make
use of TACTIC widgets.

SideBarWdg

The SideBarWdg defines the look of the side bar on the left of the TACTIC interface. The SideBarWdg makes heavy use of the
widget config to determine the contents of the side bar. There are 3 main types of widgets that would be defined as elements in
the SideBarWdg:

e LinkWdg
* FolderWdg (Currently SectionWdg)

* SeparatorWdg

TACTIC Developer 45/99

The top level view for the project views can be found in the widget config table with the criteria:

* search_type = SideBarWdg

* view = project_view

This will defined a list of elements that appear in the top level of the "Project View". An example would look like the following:

<config>
<project_view>
<element name=’summary’ />
<element name=’'modeling’ />
</project_view>
</config>

Although, you could defined the display section here, there are are hierarchical definitions to the elements. If a definition is not
found inline, TACTIC will look at the the database for the specially named "definition" view.

* search_type = SideBarWdg

* view = definition

<config>
<definition>
<element name='summary’ title=’Asset Summary’>
<display class='LinkWdg’ >
<class_name>tactic.ui.panel.ViewPanelWdg</class_name>
<search_type>prod/asset</search_type>
<view>summary</view>
</display>
</element>
<element name='modeling’ title=’'Modelling’>
<display class=’FolderWdg’>
<view>modeling</view>
</display>
</element>
</definition>
</config>

Both the summary and modeling elements are defined in this special "definition" view"

Since all of the folders at all levels cascade to look at the "definition" view, it is useful to always define defintions of elements in
the "definiton" view. This will allow a consistent definition for all of the "views" in the project view.

The "summary" view is defined as a LinkWdg. This widget takes the information defined in the options and then displays that
class in the main body of the TACTIC interface.

widget = ViewPanelWdg(search_type='’prod/asset’, view='’summary’)

As stated ealier, the ViewPanelWdg, combines a SearchWdg with a TableLayoutWdg.

The second element defines a "modeling" folder. Whe a folder is click, it will open up and display another list that is derived
from the "modeling" view.

TableLayoutWdg

This widget is the primary class used in TACTIC to lay out tabular data. It makes heavy use of widget config to define what to
display.

To display the rows and columns of the tabular layout, this widget makes use of the following:

\a) rows which are sobjects

TACTIC Developer 46 /99

\b) columns which are widgets derived from BaseTableElementWdg.

The table layout widget is able to perform a search base on input criteria. It is also able to receive sobjects through its set_objects()
method.

This widget iterates through each of the sobjects per row.

For each column, the table draws the list of widgets provided by the config. This config is typically defined in in the database in
the widget config table.

Two parameters are typcially used to find a particular widget config.
\a) Search Type

\b) View

BaseTableElementWdg

BaseTableElementWdg are extensively used in the UL Each column in a table you see in TACTIC derives from it. For examples
of how to create your own, please refer to the Widget Development section.

5 Plugins

5.1 Plugin Manager interface

Plugins +
Plugin List & Plugin "Examples" (DEV)
adobe
Files
«” Examples [pev
my_first_plugin joev 2 O
«” Phone Theme o2

«” Pinboard Widget joev
Ihomefapachefactic_datal/pluginsfexamples

Built-in Plugin List doc.html
exampled0.spt
» | | TACTIC example002.spt
Default TACTIC Theme o=v example003.spt

exampled04.spt
Empty Theme C=v
example00s.spt

«” Unittest Project p=v, example006.spt

manifestxml

Plugin Manager

The plugin Manager View is where you will be managing all your plugins. From this view, you can create a plugin, fully install
a plugin, and modify existing plugins. You can find all your installed plugins in the plugin list at the left hand side of the view.
This shows all the plugins you have installed along with all the built-in plugins which have come with your TACTIC installation.
After selecting a plugin, you have access to:

Plugin Info:

e Name
* Code: This is an important entity
* Version: Imporant when you are planning to use or create multiple versions of a plugin

* Description

Documentation:

TACTIC Developer 477199

* shows all the documentation which has been provided for the plugin from the developer
Manifest file:

* ability to export the manifest.xml
* ability to publish the plugin (more information on this in the documentation on creating a plugin)
* contains technical information about the plugin

* can find more information about this in the documentation about creating a plugin

Files: The files tab shows the raw folder structure and files of the plugin. From here, a number of file operations can be performed.

Adding files (Uploading)

* Removing files

Creating folders

* Renaming files

5.2 Create a Plugin

What is a technical description of a TACTIC plugin?

A plugin is a self-contained package of files that TACTIC can make use of to extend the base functionality. Virtually any
functionality in TACTIC can be made into a plugin.

A plugin can contain:

* project configuration data
* any database data

* jsfiles

* css files

* documentation

* python files

manifest.xml file

The manifest file is a description of the entries in the database that are owned by the plugin. This allows the plugin manager to
extract the appropriate database entries and commit the .spt files. It contains elements like:

data: a collection of name/value pairs that describe information about the plugin

* code
* description

e version

sobject: describes which sobjects the plugin contains. It’s an expression of the form <sobject search_type="[search_type]”> with
attributes:

* code: the specfic code of the object

 expression: an expression of which all matched sobject will belong to the plugin

TACTIC Developer 48/99

* path: the relative .spt file path that all sobjects will be written to
* ignore_columns: a comma seperate list of columns for the plugin exporter to ignore

» There are some special attributes for specific search types. The config/widget_config search type has the attribute:

— view

.spt files

".spt" files are database files that contain database schema structure and database data. These files enable TACTIC to read and
write database data that is both platform and database independent. This abstractions allows TACTIC plugins to be used on any
supported TACTIC platform. An important design criteria of .spt files are that they are human readable even when the database
entry contains xml or software code. More importantly, they can be easily diff’ed using standard software tools so that the code
produced can show proper diffs using any source code management system (such as Perforce, SVN or Git). This is essential for
collaborative work building plugins to delivery to a 3rd party.

Creating the Plugin

Once you are in the plugin manager, you can the New button which creates a new plugin outline. Afterwards, you can start
filling in the details like name, type, etc. On creation, a plugin type can be specified. Depending on the plugin type a number of
bootstrap data will be created to support the structure of the plugin. After selecting Create, the plugin will be created and you
will be able to see it in the plugin list.

If you go to the documentation tab, you will find that you are able to create new documentation if the documentation doesn’t
exist. This will create a new file, doc.html, which you can edit now.

To add files to the plugin, select the plugin and go to the files tab. Here, you will find many options like the ability to upload or
simply create a new file. The new files that you are uploading or creating are used properly when their purpose is explained in
the manifest.xml file.

After customizing the plugin to your needs, you can now package the plugin to perhaps upload to the community site so others
can use it. Documentation on packaging can be found in this section under Packaging a Plugin.

Best Practices

Widget config tables should not include code or id columns or they must be explicitly set to values that are guaranteed to be
unique on any installation of TACTIC. Otherwise, the plugin should not depend on the value of the code or id column.

This is also true of “custom_scripts” written in the script editor.

When referring to an sobject, always search by code (not id). When doing this, make sure the code contains a namespace that
will not conflict with any other plugin.

5.3 Packaging a Plugin
Plugin "Plugin Manager" (DEV)

Z::."e':}::' JW[:%E

| E_xeort || Publish |

=manifest=
=data=
=code=community/plugin_manager=/code=
=title=Plugin Manager=fitle=
=description=Flugin Manager used in the community site=/description=
=/data=
=sobject search_type="config/widget_config” view="plugins.*" path="plugins.spt” ignore_columns="id,code"/=
=/manifest=

Plugin Directory

TACTIC Developer 49/99

A TACTIC plugin package is simply a .zip file containing all the files of a plugin. Plugins are installed in the following directory:
<TACTIC_DATA_DIR>/plugins

The .zip files are usually stored in:

<TACTIC_DATA_DIR>/dist

Categories of Plugins

Plugins are defined into categories. Due to the flexibility of the plugin architecture, a single plugin can package tools, columns,
and themes in any combination. These categories are only used to organize plugins and can also bootstrap common functionality
that would be packaged into a plugin.

All of these will have most of the view definitions in the Custom Layout Editor. Each individual view can have a type. See
Custom Layout Editor documentation for more information on this.

* project: this defines the structure of the project. It may or may not include a theme, but it is usually possible to use different
themes for a given project provided the theme has been set up correctly.

* theme: a theme defines the look and feel of a project as experienced by end users. A theme should have the following
requirements:
— ameans of displaying links as represented by the side bar.
— ameans of logging out
— overriding the login page (optional)

 column - This represents a plugin that will be added to columns in a table. These will generally consist of one or more columns
that can be added to a tabular layout.

* tool - A tool is a widget that provides additional functionality to the users. Generally a tool needs to be launched by a button
or a menu item from the sidebar.

Publishing the Plugin

To package your created plugin to the tactic data directory, select the plugin and go to the manifest tab. Here, you can make sure
that the plugin is named and versioned appropriately. You now need to make sure that the manifest you’ve wrote is exported,
exporting saves the manifest data you have there to the manifest.xml file. You can now select Publish and TACTIC will package
all the files and create a .zip file of the plugin folder from the root plugin folder (ie: <TACTIC_DATA_DIR>/plugins). When
a version is published, the folder of the current plugin is taken and copied to a new folder with the name <PLUGIN_CODE>-
<VERSION>. Note that the PLUGIN_CODE can have “/” to present folders.

5.4 Plugin Versions

6 Expression Development

6.1 Using Expressions in Scripting

Using Expressions in Python - Server code

Expressions can be accessed directly through Python code. The expression language is often very convenient to quickly perform
relatively complex searches quickly and easily.

To access the expressions in Python, you would use the following code:

from pyasm.biz import ExpressionParser

parser = ExpressionParser ()

expr = "QGET (prod/shot [’code’,’chr001’] .prod/shot_instance.prod/asset.code)"
result = parser.eval (expr)

It is often more convenient just to access it through the Search module:

TACTIC Developer 50/99

from pyasm.search import Search
expr = "QGET (prod/shot[’code’,’chr001’].prod/shot_instance.prod/asset.code)"
result = Search.eval (expr)

Using Expressions in Python - Client API code

To access the expressions in the Python Client API, you would use the following code:

server = TacticServerStub.get ()
expr = "QGET (prod/shot [’code’,’chr001’] .prod/shot_instance.prod/asset.code)"
result = server.eval (expr)

When the expression language returns sobjects, these will be in the form of a dictionary like all other sobjects in the client API.
Using Expressions in Javascript - Client API code
To access the expressions in the Javascript Client API, you would use the following code:

var server = TacticServerStub.get ()
expr = "QGET (prod/shot [’code’,’chr001’] .prod/shot_instance.prod/asset.code)"
var result = server.eval (expr)

Using Expressions in Widget Config
The main widget to use expressions is "tactic.ui.table.ExpressionElementWdg".

When using the ExpressionElementWdg, the starting point of the expression is automatically the SObject associated with the
row. This allows you to use the shorthand form without having to filter.

<element name=’code’>
<display class=’tactic.ui.table.ExpressionElementWdg’ >
<expression>@GET (.code) </expression>
</display>
</element>

Using Expressions inline in HTML
When using the CustomLayoutWdg, inline expressions are supported using a [expr][/expr] tag formatting.

<div>
<h2>There are [expr]@COUNT (prod/asset[’asset_library’, ’'chr’]) [/expr] Characters</h2>
</div>

Using Expressions in CustomLayoutWdg

The custom layout widget has a special html tag which can have html embedded within it. CustomLayoutWdg provides the
ability to embed expressions within its html definition.

The following demonstrates a widget config using expressions:

<?xml version=’'1.0" encoding=’UTF-8’7?>
<config>
<example>
<html>
<table>
<tr><td>[expr] $SLOGIN[/expr]</td></tr>
<tr><td>[expr] {@GET (.code)} : {QGET(.description)}[/expr]l</td></tr>
</table>
</html>
</example>
</config>

Please refere to the CustomLayoutWdg in the Widget Reference documentation for more information on how to use the Custom-
LayoutWdg.

TACTIC Developer 51/99

7 Validation

7.1 Validation Set-up

To limit what a user can enter in a field, you can set up validation for the column. It is particularly useful when the user is required
to type in a text field instead of a selection list. This works on the client side so it activates before you click on the save button.

Example 1: Ensure the field description of prod/shot starts with the word "Client"

In the edit view of prod/shot, make sure there is an element for description defined with these display options:

<element name=’description’>
<display class='TextWdg’>
<validation_js>return value.test (/"Client/)</validation_js>
<validation_warning>It needs to start with Client</validation_warning>
</display>
</element>

If the person types in something, press Enter and it fails the validation, the text field will turn red. You can view the warning
message when the mouse pointer is over the text field. The variable value is assumed to be value the user types in.

Example 2: Ensure the field description of prod/shot contains the code in the same row. The assumption is that the user would
pick a show code in the previous column before typing in a description.

In the edit view prod/shot, make sure there is an element for description defined with these display options:

<element name=’description’>
<display class=’'TextWdg’>
<validation_script>validate_desc</validation_script>
<validation_warning>It needs to contain the shot code</validation_warning>
</display>
</element>

The script it refers to is a javacript saved in the Script Editor. It has a code equal to validate_desc.

// value, display_target_el, and bvr are assumed variables
var row = display_target_el.getParent (' .spt_table_tr’);
var td = row.getElement ('td[spt_element_name=shot_code]’);
var shot_code = td.getAttribute (' spt_input_value’);
var exp = new RegExp (shot_code);
if (!shot_code) {
return false;
}
if (value.test (exp)) {
return true;
}
else {
return false;

Like value, display_target_el and bvr are assumed variables.. The former represents the html element holding the value whereas
the latter is the behavior object.

TACTIC Developer 52 /99

8 Async Loading

8.1 Asynchronous Loading

My Tasks

Loading ...

Default behaviour in TACTIC 4.1

Asynchronous loading is a new feature that has been introduced in TACTIC 4.1. Its introduction is the result of a shift in the
philosophy of TACTIC user interface design. In this new direction, Uls are expected to be more fluid and responsive.

As of TACTIC 4.1, loading new tabs and links now looks like the picture above. The browser window is still useable during this
animation - another link can be clicked in the meantime, for example.

As well, all TACTIC tables load asynchronously: the first 5 rows initially load and the rest of the table is loaded in groups of 10.
This allows you to begin working on the table straight away.

Asynchronous Loading in the Custom Layout Editor

As of TACTIC 4.1, the Custom Layout Editor supports asynchronous loading of views. Element tags now support a load attribute,
with three options.

Option Description

inline (default) Load the element with its parent custom layout.

sequence Load the element after the parent layout is loaded, in sequence with other elements using this
option.

async Behave similarly to sequence, but all elements using this option send a request to begin loading as
soon as the parent layout is loaded.

Sequence and async both cause the element to load after the custom layout that contains them loads, allowing a user to begin
working before the particular element has loaded.

The difference between sequence and async is only apparent once multiple elements are using these attributes. For example, if
a view named my_view has two elements, view! and view2, which are loaded using the sequence option (as below), my_view
would first load, with loading placeholders for view! and view2. Once viewl loads, view2 would begin loading.

<element load=’sequence’ view='viewl’ />
<element load=’sequence’ view='view2’ />

If instead both elements were using async, two requests would be sent once my_view loads so both elements would begin loading
at the same time.

The decision to use async or sequence depends on the scenario. Both allow the parent view to load faster, so their use is
recommended. Using async generally decreases the total load time on all elements in a view, but it also causes all the server
requests to happen simultaneously.

TACTIC Developer 53/99

9 Messaging

9.1 Messaging

Description

The Subscription Bar Widget allows user to subscribe to an sObject. This widget provides a convenient way to track any actions
or behaviors on an sObject, including actions from different users. All the messages will be recorded into Subscription Bar
Widget and Message History.

Info
Name Subscription Bar Widget
Class tactic.ui.app.SubscriptionBarWdg
TACTIC Version Support 4.1+
Required database columns none
Implementation

Specify (or look up) the name of the Inject Subscription Action under Admin Views — Project — Custom Layout Editor—Gear
Menu.

In the example below, in order to activate the Subscription Bar, a sample script has been created and named Test_Messaging:

Look up and edit that Test_Messaging script in the custom layout editor. Use the following HTML code as an example of what
to add to the sample script:

2 H @ & @_ @ View: | Test Messaging JType:
HTHL | Pytnon| Test Styles Behaviors Options Files
HTML: &)
Image

1 |<div class="Teat Measaging">

2 <element>

3 <display class="tactic.ui.app.SubscripticnBarWdg™>

</display>
5 </element>
6 [</div>

<div class="Test_Messaging">
<element>
<display class="tactic.uil.app.SubscriptionBarWdg">
</display>
</element>
</div>

After running the test button, a Test Custom layout window will appear:

Once the subscription bar has been set up, users can select the sObject they want to subscribe by right clicking the sObject and
choosing the option Subscribe to Item:

Now a simple subscription bar has been set up and targeted to selected sObject. Any actions, such as checking in files, editing
description and changing status, from other users will be recorded.

Advanced

A detailed subscription history could be viewed in Message History. This tab can be found by clicking the Subscription History
icon in every message:

TACTIC Developer 54 /99

Each entry contains all the detailed information of the message, such as Code, Category and Login.

‘MessageHistory |+

[Code Message Code Category

MESSAGE_LOGO0015 works/iworkcase1? sobject
project=works&code=WORKCASE100002

10 Triggers

10.1 Python Trigger in Tactic Editor Guideline

10.2 Triggers

Triggers are callbacks that are named based on certain events. TACTIC provides three types of triggers which allow you to add
to existing functionality.

* Event-based triggers: triggers based on specific events that occur within TACTIC. During the execution of a command in
TACTIC, various named events may be called. Any one of these events may trigger other actions, if a custom trigger is
registered to that event.

* Server-side pipeline triggers: triggers defined in a server-side pipeline. They are called as a result of events that occur in the
pipeline itself

* Client-side pipeline triggers: triggers defined in a client-side pipeline. They are defined in the client APL

As TACTIC runs through its code, it will periodically call named events. These named events provide a mechanism for attaching
custom trigger handlers.

There are two styles of named event triggers supported by TACTIC.

The first style of event-based trigger makes use of the client API. The functionality in the client API can be accessed by the
server code and is often preferable for third parties to use because it uses a well-defined interface much easier to program in than
the complex server code. To create your own custom trigger, create a new class derived from the Handler class and override the
execute function:

from tactic_client_1lib import TacticServerStub
from tactic_client_lib.interpreter import Handler

class CustomTrigger (Handler) :
def execute (my) :

get a handle to the server stub

server = TacticServerStub.get ()

server.start ("Starting server transaction")

try:
at this point, you have full access to the server using the client API
ret_val = server.ping/()

get values from the inputs
search_key = my.get_input_value ("search_key")

sobject = server.get_by_search_key (search_key)
if sobject.get ('asset_library’) != ’character’:
return

check to see that the status has changed

update_data = my.get_input_value ("update_data")

if update_data.get (' status’) :
do_something_interesting(sobject)

TACTIC Developer 55/99

except:
server.abort ()

else:
server.finish ()

A reference to the TacticServerStub can be accessed through the static method get(). Once a reference to the server stub is
obtained, it is possible to make use of the client API functionality. The main difference is that this code is being run inside the
TACTIC server process, so the overhead of XMLRPC is not present. Thus triggers running on the server side will run much
faster that those running using the XMLRPC protocol.

It is also possible in the trigger to access another TACTIC server by using the TacticServerStub and explicitly setting the three
settings required to connect to another server. For example, here is some code to synchronize the asset list:

server = TacticServerStub ()
server.set_server ("tactic2.com")
server.set_ticket (ticket)
server.set_project (project)
server.start ("Synchonizing data")
try:
search_key = my.get_input_value ("search_key")
update_data = my.get_input_value ("update_data")
server.update (search_key, update_data)
except:
server.abort ()
else:
server.finish ()

Synchronization of data between two TACTIC servers is possible once authentication is set up. (Note that some priviledged
knowledge about the remote server is required in order to authenticate.)

The second style of event-based trigger is driven from the class pyasm.command:

from pyasm.command import Trigger
class CustomTrigger (Trigger) :
def execute (my) :
print "executing custom trigger"

This trigger style makes use of server-side code and is much more complex to use. It is most often used internally and should
generally not be used unless required due to a limitation in the client APL

As TACTIC server code is executed, triggers will be called periodically. TACTIC will call named events, which will then trigger
registered handles that are listening to those events.

To better understand the event system, please review the TACTIC Setup— Project Automation — TACTIC Event System
Introduction documentation

Each of the handlers for the events listed above get an "input package" delivered to them. This input package contains information
that is useful to the handler as determined by the command that called the trigger.

Table 1: Insert / Edit Input Values

param description type

is_insert specifies whether a particular trigger Boolean
was an insert or an edit

search_key the search_key of the SObject String
operated on by the insert/edit

prev_data a dictionary of previous values of Dictionary
attributes that were changed

update_data a dictionary of updated values of Dictionary
attributes that were changed

TACTIC Developer 56 /99

In order for a trigger to listen to an event, it must be registered in the trigger search type.

In the TACTIC admin site: http://<server_name>/admin, click on the triggers view. This view defines a list of triggers and the
events they are registered to.

When you insert a new trigger, you specify the full class path of your new trigger, along with a description and the event that the
trigger should listen for.

Time-based triggers allow you to execute custom code on the server at either specific intervals or at a specific time of the day.
These are very useful triggers that allow you to handle any number of different actions.

* Backup (although this may be better done with a dedicated backup system)
e Cleanup

* Autobuilding of files

* Statistics gathering

* Data synchronization

In this example, the function get_execute_interval(), used to determine the intervals during which this trigger will be run, is
overridden to 3600. This trigger will be run every hour (60*60) seconds. (The shortest hard coded interval is every 60 seconds.
If you set a smaller number it will still execute once every 60 seconds.)

class SampleTimedTrigger (TimedTrigger) :
def get_execute_interval (my) :
"’ ’return number of seconds between execution’’’
return 3600

def execute (my):
print "doing a bunch of stuff"
print "sleeping"
time.sleep(15)
print ".... done"

In order for TACTIC to recognize this trigger, it has to be registered in the list of triggers in the Admin site. All timed triggers
listen to the "timed" event.

11 Checkins

11.1 Tactic Checkin Process

11.2 Custom Checkin Pipeline

Partial override

There are four points in the current Application check-in process that the developer can insert handlers to perform custom actions.
These events are called checkin/pre_export, checkin/create, checkin/process, checkin/dependency.

Here is a plain pipeline:

<pipeline>
<process name="model/>
<process name="texture"/>
<process name="shader"/>
<process name="rig"/>
<connect to="texture" from="model" context="model"/>
<connect to="shader" from="texture" context="texture"/>

http://<server_name>/admin

TACTIC Developer 57 /99

<connect to="shot/layout" from="rig" context="rig"/>

<connect to="rig" from="texture" context="texture"/>

<connect to="shot/lighting" from="shader"/>
</pipeline>

If we want to intercept the model process checkin with before exporting occurs and the texture process before and after the export
of the node occurs, we will have a pipeline like this:

<pipeline>
<process name="model">
<action event="checkin/pre_export" scope="client"
class="pyasm.application.common.interpreter.MayaModelCheckinPreexport"/>
</process>
<process name="texture">
<action event="checkin/pre_export" scope="client"
class="pyasm.application.common.interpreter.MayaTextureCheckinPreexport"/>
<action event="checkin/process" scope="client"
class="pyasm.application.common.interpreter.MayaTextureCheckinProcess"/>
</process>
<process name="shader"/>
<process name="rig"/>
<connect to="texture" from="model" context="model"/>
<connect to="shader" from="texture" context="texture"/>
<connect to="shot/layout" from="rig" context="rig"/>
<connect to="rig" from="texture" context="texture"/>
<connect to="shot/lighting" from="shader"/>
</pipeline>

The class attribute can point to a custom python path, usually accessible on the network where the client computer is on. This
python class can do something as simple as adding a cube and parent it to the to-be-exported node, the scene file is free from
user-created junk nodes, or making sure a certain special node exists in the scene file. Please to the full override section for some
python class examples. The main method required is just execute(). And presumably you will import the application’s python
module to do the manipulation desired. For Maya, you would run this to create a cube:

import maya as cmaya
cmaya.cmds.polyCube ()

Full override

I Warning

° This method requires more set-up on the developer’s end as it does not leverage the exisiting application checkin
functionalities. This section describes how to customize the checkin pipeline, which is a series of processes, each with
an action handler defined.

Normally TACTIC handles many of the details for checking in files. However, this process can be completely taken over and
customized.

An example checkin pipeline might look like the following:

<pipeline>
<process name="validation">
<action class="pyasm.application.common.interpreter.MayaModelValidate"/>
</process>
<process name="extractor">
<action class="pyasm.application.common.interpreter.MayaModelCheckin"/>
</process>
<connect from="validation" to="extractor"/>
</pipeline>

TACTIC Developer 58/99

This structure is the same for all pipelines defined in TACTIC. It describes a series of processes with actions. The actions have an
attribute "class" that handles a particular part of the checkin process. TACTIC delivers a defined pipeline to a pipeline interpreter,
which then executes the handlers in order. Handlers make use of the Client API to interact with TACTIC.

Note

For information on the Client API, refer to the Client API Documentation

Process Handlers

A process handler is a function or subroutine that contains commands that are executed in response to an event. In TACTIC, all
handlers are derived from the Handler class. This class defines a simple interface which has some basic functions which can be
overridden:

execute() The commands to be performed by the handler.

undo() The method called when an exception occurs. TACTIC
calls the undo() method for each handler in the pipeline in
the reverse order that they were executed.

There are several helper methods you can use to set and retrieve information using handlers. Any particular handler has two
sources of information:

1. Package: this data is global to all of the nodes. It is the dictionary data structure that TACTIC delivers to the client machine
and includes such settings as status information and user interface selections. This data should be considered read-only.

You can retrieve package information using the method:
get_package_value (my, key)

where key is the name of the dictionary key for the data. The exact list of the keys delivered will depend on the user
interface settings. 2. Input: this data is received from the previous process handler. The handler itself determines which
input it receives.

You can retrieve input information using the method:
get_input_value (my, key)

Handlers can deliver these values to future nodes with output values, which become the input values for the next node. You
can set output information using the method:

set_output_value (my, key)

Example

The following sample is simple validation handler code that checks a Maya session for the existence of a particular node through
its search key.

import maya.cmds as cmds
from pyasm.application.common.interpreter import Handler

class MayaModelValidate (Handler) :
def execute (my) :
get the search key from the delivered package
search_key = my.get_package_value ("search_key")

get the sobject from the server
sobject = my.server.get_pby_search_key (search_key)
if not sobject:
raise Exception ("SObject with search key [%$s] does not exist" % \
search_key)

code and verify in maya that the node is in session
code = sobject.get ('code’)

TACTIC Developer 59/99

if not cmds.ls (code):
raise Exception ("Cannot checkin: [%s] does not exist" % code)

my.set_output_value (' sobject’, sobject)

This code example, although simple, illustrates a number of handler interaction requirements.

import maya.cmds as cmds

This first line imports the standard Maya command libraries to allow the handler to interact with Maya.
search_key =my.get_package_value ("search_key")

This line requires user input from a field in the interface on the search key (unique identifier) for a particular SObject.
sobject =my.server.get_by_ search_key (search_key)

Using the search key obtained from the interface, this line uses the client API to retrieve data about the specific SObject. Handlers
can access the server stub code by using the my . server prefix. All methods defined in the Client API are accessible through
this type of reference. (See the Client API documentation for more information.)

The data structure returned is a dictionary of values that can be accessed as follows:

code = sobject.get ('code’)
if not cmds.ls (code):
raise Exception ("Cannot checkin: [%s] does not exist" % code)

The code then checks the Maya session to verify that a node exists with the same name as defined in the SObject. If not, an
exception is created that halts the checkin process and informs the user with the appropriate error message that the checkin failed.

12 Conventions

12.1 Naming Convention Classes

TACTIC Directory and File Naming

TACTIC has a default file naming convention that has proven to work for a wide variety of productions. A production facility
may simply choose to use this default naming convention, or could also override it to match the convention used by its current
system. Customizing the directory and file naming conventions has proven to be the most time consuming part of integrating
TACTIC into a system. The difficulty required to do this depends largely on being able to access the directories and file names
procedurally.

TACTIC allows you to define different project types in the Site Admin — Projects Types View. Here you can define a different
type of project and set up the various types of naming conventions for a particular project. When creating a project, you select a
project type and it will make use of the information in the project type.

The various naming conventionn are as follows:

1. file_naming_cls: this class determines the file name of every file checked into TACTIC.

2. dir_naming_cls: this class determines the directory of every file checked into TACTIC

3. app_naming_cls: this class determines the node names within an application such as Maya.
The following code snippet is an example of overriding the directory for all files checked into a shot:

from pyasm.prod.biz import ProdDirNaming

class CustomDirNaming (ProdDirNaming) :
def prod_shot (my, dirs):

shot = my.sobject

TACTIC Developer 60 /99

dirs = my.get_base_dir ()

add the sequence code
sequence_code = shot.get_value ("sequence_code")
dirs.append (sequence_code)

add the shot code
shot_code = shot.get_code()
dirs.append (shot_code)

put all files in the "scenes" directory
dirs.append("scenes")

return dirs

This will create a directory name that looks something like
/<base_dir>/<sequence_code>/<shot_code>/scenes
or

/sample3d/shot/XG/XG002/scenes

Overriding naming conventions is a simple matter of defining your own implementation class and implementing specific functions
in this class. Each SObject has its own SObject type. For example a shot in a production may have the type "prod/shot". This
naming uniquely identifies this type of SObject.

To customize the naming convention for this class, you replace the slashes "/" in the Search Type with underscores "_" and use

this as the name of the function. So in the example above, to customize a Shot (prod/shot), you define a function called prod_shot.
Whenever TACTIC is asked to produce a directory for a particular SObject, an implementation function such as this is called. If
no such function exists, then the default is used.

get_base_dir() simply gets the base directory of this SObject (default <base>/<project>/<table>)
Overriding the file naming is similar.

from pyasm.prod.biz import ProdFileNaming

class CustomFileNaming (ProdFileNaming) :
def prod_shot (my) :

parts = []
parts.append (my.sobject.get_code())

parts.append ('’ custom’)
parts.append (my.snapshot.get_context ())
version = my.snapshot.get_value ("version")

version = "v%0.3d" % int (version)
parts.append(version)

ext = my.get_ext ()

name = ’_’ .join (parts)

name = ’%s%s’% (name, ext)

return name

This will create a file name that looks something like
<shot_code>_<custom>_<context>_<version>.<ext>

or

“XG002_bedroom_anim_v004.jpg

TACTIC Developer 61/99

Custom in this case is a custom attribute added to a shot. So with these two classes, we would have a full path for this file of:
“/assets/sample3d/shot/XG/XG002/scenes/XG002_bedroom_anim_v004.jpg *
Default Naming Conventions

TACTIC comes with a default file and directory naming convention. You may choose to adopt this default naming convention as
specified above, or you may create your own naming convention. The choice of which naming conventions should be used is often
a hard one. Using TACTIC’s default naming convention makes it much simpler and quicker to start using TACTIC in production.
This is the recommended route if there is no legacy within the facility. If, however, you have many scripts and processes that rely
on a previous naming convention, then you may customize TACTIC to map to your current naming convention.

The rest of this section describes TACTIC’s default naming conventions.

To start, there is a base directory under which all asset files are stored. This base directory is specified in the Tactic conf file in
<sites_dir>/config/tactic_linux.conf (tactic_win32.conf for windows). The next level is divided by project and then the type of
the sobject. All projects of this same type are located under this directory:

<base_asset_dir>
The default for any search type checked into a specific context is represented with the following convention:

The next levels represent the subdirectory component and are all associated with metadata for the SObject types in some way.
The details are up to the implementation function for each specific SObject type.

<base_asset_dir>/<project_code>/<search_type>/<sobject_code>/<sobject_code>_<
snapshot_context>_<snapshot_version>.<original_ file_ext>

Default

If an SObject type does not have any overriding function, then there is a default implementation:

Subdir: empty File: <filename>_<file_code>.<ext>

Subdir: empty
File: <filename>_<file_code>.<ext>

example: /home/apache/assets/storyboard/castle01_00034355BAR. jpg

The file code ensures that the file name is unique. This uniqueness prevents files from overwriting each other, even when files of
the same name are checked in. In recent versions TACTIC has moved away from adding the file code to the file name in favor of
the clearer vO02_BAR ending. (However, the file name format can still exist for numerous asset types where the file name is of
little consequence.)

13 TACTIC Python Client API Reference

13.1 abort

abort(ignore_files=False)

Abort the transaction. This undos all commands that occurred
from the beginning of the transactions

keyparam:

ignore_files: (boolean) - determines if any files moved into the
repository are left as is. This is useful for very long processes
where it is desireable to keep the files in the repository

even on abort.

TACTIC Developer 62 /99

example:
A full transaction inserting 10 shots. If an error occurs, all 10
inserts will be aborted.

server.start (' Start adding shots’)
try:

for 1 in range(0,10):

server.insert ("prod/shot", { ’'code’: ’"XG%0.3d’%i })

except:

server.abort ()
else:

server.finish ("10 shots added")

13.2 add_config_element

add_config_element(search_type, view, name, class_name=None, display_options={}, action_class_name=None, action_options=
element_attrs={},login=None, unique=True, auto_unique_name=False, auto_unique_view=False)

This method adds an element into a config. It is used by various

UI components to add new widget element to a particular view.

param:

search_type - the search type that this config belongs to

view - the specific view of the search type

name - the name of the element

keyparam:

class_name - the fully qualified class of the display

action_class_name - the fully qualified class of the action

display_options - keyward options in a dictionary to construct the specific display
action_options - keyward options in a dictionary to construct the specific action
element_attrs - element attributes in a dictionary

login - login name if it is for a specific user

unique - add an unique element if True. update the element if False.
auto_unique_name - auto generate a unique element and display view name
auto_unique_view - auto generate a unique display view name

return:

boolean - True

example:

This will add a new element to the "character" view for a 3D asset

search_type = ’'prod/asset’
view = ’characters’
class_name = ’'tactic.uil.common.SimpleElementWdg’

server.add_config_element (search_type, view, class_name)

This will add a new element named "user" to the "definition" view. It contains detailed display and action nodes

data_dict = {} # some data here
search_type = ’'prod/asset’
server.add_config_element (search_type, ’'definition’, ’‘user’, class_name = data_dict[’ <

class_name’], display_options=data_dict[’display_options’], element_attrs=data_dict[’ ¢
element_attrs’], unique=True, action_class_name=data_dict[’action_class_name’], —
action_options=data_dict[’action_options’])

TACTIC Developer

63 /99

13.3 add_dependency

add_dependency(snapshot_code, file_path, type=ref)

Append a dependency referent to an existing check - in.

All files are uniquely containe by a particular snapshot. Presently,
this method does a reverse lookup by file name. This assumes that
the filename is unique within the system, so it is not recommended
unless it is known that naming conventions will produce unique
file names for every this particular file. If this is not the

case, it is recommended that add_dependency_by_code() is used.
param:

snapshot_code - the unique code identifier of a snapshot
file_path - the path of the dependent file. This function is able
reverse map the file_path to the appropriate snapshot

keyparam:

type - type of dependency. Values include ref and input_ref

ref = hierarchical reference: ie A contains B

input_ref = input reference: ie: A was used to create B

tag - a tagged keyword can be added to a dependency to categorize
the different dependencies that exist in a snapshot

return:

dictionary - the resulting snapshot

13.4 add_dependency_by code

add_dependency_by_code(to_snapshot_code, from_snapshot_code, type=ref)

Append a dependency reference to an existing checkin. This dependency

is used to connect various checkins together creating a separate
dependency tree for each checkin.

param:

to_snapshot_code: the snapshot code which the dependency will be
connected to

from_snapshot_code: the snapshot code which the dependency will be
connected from

type - type of dependency. Values include ref and input_ref

ref = hierarchical reference: ie A contains B

input_ref - input reference: ie: A was used to create B

tag - a tagged keyword can be added to a dependency to categorize
the different dependencies that exist in a snapshot

return:

dictionary - the resulting snapshot

TACTIC Developer

64 /99

13.5 add_directory

add_directory(snapshot_code, dir, file_type=main, mode='"copy", dir_naming=’, file_naming=")
Add a full directory to an already existing checkin.

This informs TACTIC to treat the entire directory as single entity
without regard to the structure of the contents. TACTIC will not

know about the individual files and the directory hierarchy within

the base directory and it it left up to the and external program

to intepret and understand this.

This is often used when logic on the exact file structure exists in

some external source outside of TACTIC and it is deemed to complictaed
to map this into TACTIC’s snapshot definition.

param:

snapshot_code - a unique identifier key representing an sobject

dir - the directory that needs to be checked in

keyparam:

file_type - file type is used more as snapshot type here

mode - copy, move, preallocate, manual, inplace

dir_naming - explicitly set a dir_naming expression to use

file_naming - explicitly set a file_naming expression to use

return:

dictionary - snapshot

example:

This will create a new snapshot for a search_key and add a directory using manual mode

dir = ’C:/images’
handoff_dir = my.server.get_handoff_dir ()
shutil.copytree (' %$s/subfolder’ %dir, ’%s/images/subfolder’ $handoff_dir)

snapshot_dict = my.server.create_snapshot (search_key, context=’render’)
snapshot_code = snapshot_dict.get (' code’)
my.server.add_directory (snapshot_code, dir, file_type=’dir’, mode=’'manual’)

13.6 upload_file

upload_file(path)
Use http protocol to upload a file through http
param:

path - the name of the file that will be uploaded

TACTIC Developer

65/99

13.7 add_file

add_file(snapshot_code, file_path, file_type=main, use_handoff_dir=False, mode=None, create_icon=False)

Add a file to an already existing snapshot. This method is used in
piecewise checkins. A blank snapshot can be created using
create_snapshot(). This method can then be used to successively
add files to the snapshot.

In order to check in the file, the server will need to have access

to these files. There are a number of ways of getting the files

to the server. When using copy or move mode, the files are either
copied or moved to the "handoff_dir". This directory

is an agreed upon directory in which to handoff the files to the
server. This mode is generally used for checking in user files.
For heavy bandwidth checkins, it is recommended to user preallocated
checkins.

param:

snapshot_code - the unique code identifier of a snapshot
file_path - path of the file to add to the snapshot.

Optional: this can also be an array to add multiple files at once.
This has much faster performance that adding one file at a time.
Also, note that in this case, file_types must be an array

of equal size.

keyparam:

file_type - type of the file to be added.

Optional: this can also be an array. See file_path argument

for more information.

use_handoff_dir - DEPRECATED: (use mode arg) use handoff dir to checkin
file. The handoff dir is an agreed upon directory between the
client and server to transfer files.

mode - uploadlcopylmovelmanuallinplace

the file to the server.

create_icon - (TruelFalse) determine whether to create an icon for
this appended file. Only 1 icon should be created for each
snapshot.

dir_naming - explicitly set a dir_naming expression to use
file_naming - explicitly set a file_naming expression to use
return:

dictionary - the resulting snapshot

example:

This will create a blank model snapshot for character chr001 and

add a file

TACTIC Developer

66 /99

search_type = ’'prod/asset’

code = ’'chr001’

search_key = server.build_search_type (search_type, code)
context = 'model’

path = "./my_model.ma"

snapshot = server.create_snapshot (search_key, context)
server.add_file(snapshot.get ('code’), path)

Different files should be separated by file type. For example,

to check in both a maya and houdin file in the same snapshot:

maya_path = "./my_model.ma"
houdini_path = "./my_model.hip"

server.add_file(snapshot_code, maya_path, file_type='maya’)
server.add_file(snapshot_code, houdini_path, file_type=’'houdini’

To transfer files by uploading (using http protocol):

server.add_file(snapshot_code, maya_path, mode=’upload’)

To create an icon for this file

path = ’"image. jpg’

server.add_file(snapshot_code, path, mode="upload’, create_icon=True

To add multiple files at once

file paths = [maya_path, houdini_path]
file_types ['maya’, "houdini’]

server.add_file(snapshot_code, file_paths, file_types=file_types,

13.8 add_group

add_group(snapshot_code, file_path, file_type, file_range, use_handoff_dir=False, mode=None)

Add a file range to an already existing snapshot

param:

snapshot_code - the unique code identifier of a snapshot
file_path - path of the file to add to the snapshot
file_type - type of the file to be added.

file_range - range with format s

keyparam:

use_handoff_dir - use handoff dir to checkin file

mode - one of copy,move,preallocate

return:

dictionary - the resulting snapshot

)

mode="upload’)

TACTIC Developer 67 /99

13.9 add initial_tasks

add_initial_tasks(search_key, pipeline_code=None, processes=[])
Add initial tasks to an sobject

param:

search_key - the key identifying a type of sobject as registered in

the search_type table.

keyparam:

pipeline_code - override the sobject’s pipeline and use this one instead
processes - create tasks for the given list of processes

return:

list - tasks created

13.10 split_search_key

split_search_key(search_key)

Convenience method to split a search_key in into its search_type and search_code/id components. Note: only accepts the new
form prod/asset?project=sample3d&code=chr001

param:
search_key - the unique identifier of a sobject
return:

tuple - search type, search code/id

13.11 build_search_key

build_search_key(search_type, code, project_code=None, column=code)
Convenience method to build a search key from its components. A
search_key uniquely indentifies a specific sobject. This string

that is returned is heavily used as an argument in the API to

identify an sobject to operate one

A search key has the form: "prod/shot?project=bar&code=XG001"

where search_type = "prod/shot", project_code = "bar" and code = "XG001"
param:

search_type - the unique identifier of a search type: ie prod/asset

code - the unique code of the sobject

keyparam:

project_code - an optional project code. If this is not

included, the project from get_ticket() is added.

return:

string - search key

example:

TACTIC Developer 68 /99

search_type = "prod/asset"
code = "chr001"
search_key = server.build_search_key (search_type, code)

e.g. search_key = prod/asset?project=code=chr001

search_type = "sthpw/login"

code = "admin"

search_key = server.build_search_key (search_type, code, column=’'code’)
e.g. search_key = sthpw/login?code=admin

13.12 get_by_search_key

get_by_search_key(search_key)

Get the info on an sobject based on search key

param:

search_key - the key identifying a type of sobject as registered in
the search_type table.

return:

list of dictionary - sobjects that represent values of the sobject in the

form of name:value pairs

13.13 get_parent_type

get_parent_type(search_key)

Get of the parent search type

param:

search_key - a unique identifier key representing an sobject
return:

list - a list of child search_types

13.14 build_search_type

build_search_type(search_type, project_code=None)
Convenience method to build a search type from its components. It is
a simple method that build the proper format for project scoped search
types. A full search type has the form:

prod/asset?project=bar.

It uniquely defines a type of sobject in a project.

param:

search_type - the unique identifier of a search type: ie prod/asset
project_code (optional) - an optional project code. If this is not
included, the project from get_ticket() is added.

return:

search type string

example

TACTIC Developer 69 /99

search_type = "prod/asset"
full_search_type = server.build_search_type (search_type)

13.15 create_search_type

create_search_type(search_type, title, description=""", has_pipeline=False)
Create a new search type

param:

search_type - Newly defined search_type

title - readable title to display this search type as

keyparam:

description - a brief description of this search type

has_pipeline - determines whether this search type goes through a

pipeline. Simply puts a pipeline_code column in the table.

return

string - the newly created search type

13.16 checkout

checkout(search_key, context, version=-1, file_type=main, dir=", level_key=None, to_sandbox_dir=False, mode="copy)
Check out files defined in a snapshot from the repository. This

will copy files to a particular directory so that a user can work

on them.

param:

search_key - a unique identifier key representing an sobject

context - context of the snapshot

keyparam:

version - version of the snapshot

file_type - file type defaults to main. If set to *, all paths are checked out
level_key - the unique identifier of the level in the form of a search key
to_dir - destination directory defaults to .

to_sandbox_dir - (TruelFalse) destination directory defaults to
sandbox_dir (overrides "to_dir" arg)

mode - (copyldownload)

to copy the files to the destination location

return:

list - a list of paths that were checked out

TACTIC Developer 70/99

13.17 clear_upload_dir

clear_upload_dir()

Clear the upload directory to ensure clean checkins
param:

None

keyparam:

None

return:

None

13.18 set_current_snapshot

set_current_snapshot(snapshot_code)
Set this snapshot as a "current” snapshot
param:

snapshot_code - unique code of snapshot
return:

string - the resulting snapshot xml

13.19 get_expanded_paths_from_snapshot

get_expanded_paths_from_snapshot(snapshot_code, file_type=main)
Return the expanded path of a snapshot (used for

ranges of files)

param:

snapshot_code - the unique code of the snapshot

keyparam:

file_type - each file in a snapshot is identified by a file type.

This parameter specifies which type. Defaults to main

return:

string - path

13.20 get_all_paths_from_snapshot

get_all_paths_from_snapshot(snapshot_code, mode=client_repo, expand_paths=False, filename_mode=")
Get all paths from snapshot

param:

snapshot_code - the unique code of the snapshot

keyparam:

mode - forces the type of folder path returned to use the value from the

TACTIC Developer

71/99

appropriate tactic_<SERVER_OS> - conf.xml configuration file.
Values include lib, web, local_repo, sandbox, client_repo, relative

lib = the NFS asset directory from the server point of view

web = the http asset directory from the client point of view

local_repo = the local sync of the TACTIC repository

sandbox = the local sandbox (work area) designated by TACTIC
client_repo (default) = the asset directory from the client point of view
If there is no value for win32_client_repo_dir or linux_client_repo_dir
in the config, then the value for asset_base_dir will be used instead.
relative = the relative direcory without any base

expand_paths - expand the paths of a sequence check

filename_mode - source or ”’, where source reveals the source_path of the check

file_types - list: only return files in snapshot with these types
return:

list - paths

13.21 get_path_from_snapshot

get_path_from_snapshot(snapshot_code, file_type=main, mode=client_repo)

Get a full path from a snapshot

param:

snapshot_code - the unique code / search_key of the snapshot
keyparam:

file_type - each file in a snapshot is identified by a file type.

This parameter specifies which type. Defaults to main

mode - Forces the type of folder path returned to use the value from the
appropriate tactic_<SERVER_OS> - conf.xml configuration file.
Values include lib, web, local_repo, sandbox, client_repo, relative

lib = the NFS asset directory from the server point of view

web = the http asset directory from the client point of view

local_repo = the local sync of the TACTIC repository

sandbox = the local sandbox (work area) designated by TACTIC
client_repo (default) = the asset directory from the client point of view
If there is no value for win32_client_repo_dir or linux_client_repo_dir
in the config, then the value for asset_base_dir will be used instead.
relative = the relative direcory without any base

return:

string - the directory to copy a file to handoff to Tactic without having to

go through http protocol

example:

If the tactic. <SERVER_OS> - conf.xml configuration file contains the following:

TACTIC Developer 72/99

<win32_client_repo_dir>T:/assets</win32_client_repo_dir>

and if the call to the method is as follows:

snapshot = server.create_snapshot (search_key, context)
code = snapshot.get (' code’)
server.get_path_from_snapshot (snapshot.get (' code’))

in a trigger

snapshot_key = my.get_input_value ("search_key")
server.get_path_from_snapshot (snapshot_key)

Then, on a Windows client, get_path_from_snapshot() will return:

T:/assets/sample3d/asset/chr/chr003/scenes/chr003_rig_v003.txt

13.22 get_snapshot

get_snapshot(search_key, context='"publish', version=-1, level_key=None, include_paths=False, include_full_xml=False,
include_paths_dict=False, include_files=False, include_web_paths_dict=False, versionless=False)
Method to retrieve an sobject’s snapshot

Retrieve the latest snapshot

param:

search_key - unique identifier of sobject whose snapshot we are

looking for

keyparam:

process - the process of the snapshot

context - the context of the snapshot

version - snapshot version

revision - snapshot revision

level_key - the unique identifier of the level in the form of a search key
include_paths - flag to include a list of paths to the files in this

snapshot.

include_full_xml - whether to include full xml in the return

include_paths_dict - flag to specify whether to include a

paths_dict property containing a dict of all paths in the

dependent snapshots

include_web_paths_dict - flag to specify whether to include a

web_paths_dict property containing a dict of all web paths in

the returned snapshots

include_files - includes all of the file objects referenced in the

snapshots

versionless - boolean to return the versionless snapshot, which takes a version of
return:

dictionary - the resulting snapshot

example:

TACTIC Developer 73/99

search_key = ’'prod/asset?project=sample3d&code=chr001’
snapshot = server.get_snapshot (search_key, context=’icon’, include_files=True)

get the versionless snapshot

search_key = ’'prod/asset?project=sample3d&code=chr001’

snapshot = server.get_snapshot (search_key, context=’anim’, include_paths_dict=True, <~
versionless=True)

13.23 create_snapshot

create_snapshot(search_key, context, snapshot_type="'"file'", description="'"No description', is_current=True, level_key=None,
is_revision=False, triggers=True)

Create an empty snapshot

param:

search_key - a unique identifier key representing an sobject
context - the context of the checkin

keyparam:

snapshot_type - [optional] descibes what kind of a snapshot this is.
More information about a snapshot type can be found in the
prod/snapshot_type sobject

description - [optional] optional description for this checkin
is_current - flag to determine if this checkin is to be set as current
is_revision - flag to set this as a revision instead of a version
level_key - the unique identifier of the level that this

is to be checked into

triggers - boolean to fire triggers on insert

return:

dictionary - representation of the snapshot created for this checkin

13.24 create_task

create_task(search_key, process="'"publish'', subcontext=None, description=None, bid_start_date=None, bid_end_date=None,
bid_duration=None, assigned=None)

Create a task for a particular sobject

param:

search_key - the key identifying a type of sobject as registered in

the search_type table.

keyparam:

process - process that this task belongs to

subcontext - the subcontext of the process (context = procsss/subcontext)
description - detailed description of the task

bid_start_date - the expected start date for this task

TACTIC Developer 74799

bid_end_date - the expected end date for this task
bid_duration - the expected duration for this task
assigned - the user assigned to this task

return:

dictionary - task that was created

13.25 download

download(my, url, to_dir="".", filename="", md5_checksum=""")
Download a file from a given url

param:

url - the url source location of the file

keyparam:

to_dir - the directory to download to

filename - the filename to download to, defaults to original filename
mdS5_checksum - an md5 checksum to match the file against
return:

string - path of the file donwloaded

13.26 eval

eval(expression, search_keys=[], mode=None, single=False, vars={}, show_retired=False)
Evaluate the expression. This expression uses the TACTIC expression
language to retrieve results. For more information, refer to the
expression language documentation.

param:

expression - string expression

keyparam:

search_keys - the starting point for the expression.

mode - stringlexpression

single - TruelFalse

vars - user defined variable

show_retired - defaults to False to not return retired items

return:

results of the expression. The results depend on the exact nature

of the expression.

example:

#1. Search for snapshots with context beginning with model for the asset with the search key prod/asset ?project=sample3d&id=96

server = TacticServerStub.get ()
exp = "Q@SOBJECT (sthpw/snapshot [’ context’,’EQ’,’ "model’])"
result = server.eval (exp, search_keys=[’'prod/asset?project=sample3d&id=96"’1])

Please refer to the expression language documentation for numerous

examples on how to use the expression language.

TACTIC Developer 75/99

13.27 execute_cmd

execute_cmd(class_name, args={}, values={})

Execute a command

param:

class_name - the fully qualified class name of the widget
keyparam:

args - keyword arguments required to create a specific widget
values - form values that are passed in from the interface
return:

string - description of command

13.28 finish

finish()

End the current transaction and cleans it up

params:

description: this will be recorded in the transaction log as the
description of the transction

example:

A full transaction inserting 10 shots. If an error occurs, all 10
inserts will be aborted.

server.start (' Start adding shots’)
try:

for i in range (0,10) :

server.insert ("prod/shot", { ’'code’: ’"XG%0.3d’"%i })

except:

server.abort ()
else:

server.finish("10 shots added")

13.29 get_all_children

get_all_children(search_key, child_type, filters=[], columns=[])

Get all children of a particular child type of an sobject

param:

search_key - a unique identifier key representing an sobject

child_type - the search_type of the children to search for

keyparam:

filters - extra filters on the query : see query method for examples
columns - list of column names to be included in the returned dictionary
return:

list of dictionary - a list of sobjects dictionaries

TACTIC Developer 76 /99

13.30 query_snapshots

query_snapshots(filters=None, columns=None, order_bys=[], show_retired=False, limit=None, offset=None, single=False,
include_paths=False, include_full_xml=False, include_paths_dict=False, include_parent=False, include_files=False)
thin wrapper around query, but is specific to querying snapshots

with some useful included flags that are specific to snapshots

params:

ticket - authentication ticket

filters - (optional) an array of filters to alter the search

columns - (optional) an array of columns whose values should be
retrieved

order_bys - (optional) an array of order_by to alter the search
show_retired - (optional)

returned

limit - sets the maximum number of results returned

single - returns a single sobject that is not wrapped up in an array
include_paths - flag to specify whether to include a paths property
containing a list of all paths in the dependent snapshots
include_paths_dict - flag to specify whether to include a

paths_dict property containing a dict of all paths in the

dependent snapshots

include_full_xml - flag to return the full xml definition of a snapshot
include_parent - includes all of the parent attributes in a parent dictionary
include_files - includes all of the file objects referenced in the

snapshots

return:

list of snapshots

13.31 get_by code

get_by_code(search_type, search_code)

Get the info on an sobject based on search code

param:

search_type - the search_type of the sobject to search for

code - the code of the sobject to search for

return:

sobject - a dictionary that represents values of the sobject in the

form name/value pairs

TACTIC Developer 771799

13.32 get_dependencies

get_dependencies(snapshot_code, mode=explicit, tag=main, include_paths=False, include_paths_dict=False, include_files=False,
repo_mode=client_repo, show_retired=False)

Return the dependent snapshots of a certain tag

params:

snapshot_code - unique code of a snapshot

keyparams:

mode - explict (get version as defined in snapshot)

e - latest

e - current

tag - retrieve only dependencies that have this named tag
include_paths - flag to specify whether to include a paths property
containing all of the paths in the dependent snapshots
include_paths_dict - flag to specify whether to include a
paths_dict property containing a dict of all paths in the

dependent snapshots

include_files - includes all of the file objects referenced in the
snapshots

repo_mode - client_repo, web, lib, relative

show_retired - defaults to False so that it doesn’t show retired dependencies
return:

a list of snapshots

13.33 get_all_dependencies

get_all_dependencies(snapshot_code, mode=explicit, type=ref, include_paths=False, include_paths_dict=False, include_files=Fal
repo_mode=client_repo, show_retired=False)

Retrieve the latest dependent snapshots of the given snapshot

param:

snapshot_code - the unique code of the snapshot

keyparam:

mode - explicit (get version as defined in snapshot)

e - Jatest

e - current

type - one of ref or input_ref
include_paths - flag to specify whether to include a paths property
containing all of the paths in the dependent snapshots

include_paths_dict - flag to specify whether to include a

TACTIC Developer

78/99

paths_dict property containing a dict of all paths in the

dependent snapshots

include_files - includes all of the file objects referenced in the

snapshots

repo_mode - client_repo, web, lib, relative

show_retired - defaults to False so that it doesn’t show retired dependencies
return:

list - snapshots

13.34 get_server_version

get_server_version()
return:

string - server version

13.35 get_client_version

get_client_version()
return:

string - Version of TACTIC that this client came from

13.36 get_client_api_version

get_client_api_version()
return:

string - client api version

13.37 get_server_api_version

get_server_api_version()
return:

string - server API version

13.38 get_home_dir

get_home_dir()
OS independent method to Get the home directory of the current user.
return:

string - home directory

TACTIC Developer 79/99

13.39 get_client_dir

get_client_dir(snapshot_code, file_type=main, mode=client_repo)
Get a dir segment from a snapshot

param:

snapshot_code - the unique code of the snapshot

keyparam:

file_type - each file in a snapshot is identified by a file type.

This parameter specifies which type. Defaults to main

mode - Forces the type of folder path returned to use the value from the
appropriate tactic_<SERVER_OS> - conf.xml configuration file.
Values include lib, web, local_repo, sandbox, client_repo, relative

lib = the NFS asset directory from the server point of view

web = the http asset directory from the client point of view

local_repo = the local sync of the TACTIC repository

sandbox = the local sandbox (work area) designated by TACTIC
client_repo (default) = the asset directory from the client point of view
If there is no value for win32_client_repo_dir or linux_client_repo_dir
in the config, then the value for asset_base_dir will be used instead.
relative = the relative direcory without any base

return:

string - directory segment for a snapshot and file type

example:

If the tactic_<SERVER_OS> - conf.xml configuration file contains the following:

<win32_client_repo_dir>T:/assets</win32_client_repo_dir>

and if the call to the method is as follows:

snapshot = server.create_snapshot (search_key, context)
code = snapshot.get (' code’)
server.get_path_from_ snapshot (snapshot.get (' code’))
Then, on a Windows client, get_client_dir() will return:

T:/assets/sample3d/asset/chr/chr003/scenes

13.40 get_handoff_dir

get_handoff_dir()

Return a temporary path that files can be copied to
return:

string - the directory to copy a file to handoff to TACTIC

without having to go through http protocol

TACTIC Developer 80/99

13.41 set_config_definition

set_config_definition(search_type, element_name, config_xml="""\ login=None)
Set the widget configuration definition for an element

param:

search_type - search type that this config relates to

element_name - name of the element

keyparam:

config_xml - The configuration xml to be set

login - A user’s login name, if specifically choosing one

return:

True on success, exception message on failure

13.42 get_config_definition

get_config_definition(search_type, view, element_name, personal=False)
Get the widget configuration definition for an element

param:

search_type - search type that this config relates to

view - view to look for the element

element_name - name of the element

keyparam:

personal - True if it is a personal definition

return:

string - xml of the configuration

13.43 get_table_info

get_table_info(search_type)

Get column information of the table given a search type

param:

search_type - the key identifying a type of sobject as registered in
the search_type table.

return - a dictionary of info for each column

13.44 get_column_info

get_column_info(search_type)

Get column information of the table given a search type

param:

search_type - the key identifying a type of sobject as registered in
the search_type table.

return - a dictionary of info for each column

TACTIC Developer 81/99

13.45 get_md5_info

get_md5_info(mdS_list, texture_codes, new_paths, parent_code, texture_cls, file_group_dict, project_code)
Get md5 info for a given list of texture paths, mainly returning if this md5 is a match or not
param:

md5_list - md5_list

new_paths - list of file_paths

parent_code - parent code

texture_cls - Texture or ShotTexture

file_group_dict - file group dictionary storing all the file groups

project_code - project_code

mode - texture matching mode (md5, file_name)

return:

dictionary - a dictionary of path and a subdictionary of is_match, repo_file_code, repo_path, repo_file_range

13.46 get_pipeline_processes_info

get_pipeline_processes_info(search_key, recurse=False, related_process=None)

Retrieve the pipeline processes information of a specific sobject. It provides information from the perspective of a particular
process if related_process is specified.

param:
search_key - a unique identifier key representing an sobject

keyparams:

recurse - boolean to control whether to display sub pipeline processes

related_process - given a process, it shows the input and output processes and contexts
return:

dictionary - process names of the pipeline or a dictionary if related_process is specified

13.47 get_preallocated_path

get_preallocated_path(snapshot_code, file_type=main, file_name=’, mkdir=True, protocol="client_repo, ext="")
Get the preallocated path for this snapshot. It assumes that

this checkin actually exists in the repository and will create virtual

entities to simulate a checkin. This method can be used to determine

where a checkin will go. However, the snapshot must exist

using create_snapshot() or some other method. For a pure virtual naming

simulator, use get_virtual_snapshot_path().

param:

snapshot_code - the code of a preallocated snapshot. This can be

create by get_snapshot()

keyparam:

TACTIC Developer

82/99

file_type - the type of file that will be checked in. Some naming
conventions make use of this information to separate directories

for different file types

file_name - the desired file name of the preallocation. This information
may be ignored by the naming convention or it may use this as a

base for the final file name

mkdir - an option which determines whether the directory of the
preallocation should be created

protocol - It’s either client_repo, sandbox, or None. It determines whether the
path is from a client or server perspective

ext - force the extension of the file name returned

return:

string - the path where add_file() expects the file to be checked into
example:

it saves time if you get the path and copy it to the final destination first.

snapshot = my.server.create_snapshot (search_key, context)
snapshot_code = snapshot.get (' code’)

file_name = ’input_file_name.txt’

orig_path = ’C:/input_file_name.txt’

path = my.server.get_preallocated_path (snapshot_code, file_type,

the path where it is supposed to go i1s generated
new_dir = os.path.dirname (path)
if not os.path.exists(new_dir):
os.makedirs (new_dir)
shutil.copy (orig_path, path)

file_name)

my.server.add_file (snapshot_code, path, file_type, mode=’'preallocate’)

13.48 get_resource_path

get_resource_path(login=None)

Get the resource path of the current user. It differs from
create_resource_paths() which actually create dir. The resource path

identifies the location of the file which is used to cache connection information.
An exmple of the contents is shown below:

login=admin

server=localhost
ticket=30818057bf561429f97af59243e6ef21
project=unittest

The contents in the resource file represent the defaults to use
when connection to the TACTIC server, but may be overriden by the

API methods: set_ticket(), set_server(), set_project() or the

environment variables: TACTIC_TICKET, TACTIC_SERVER, and TACTIC_PROJECT

Typically this method is not explicitly called by API developers and

TACTIC Developer 83/99

is used automatically by the API server stub. It attempts to get from

home dir first and then from temp_dir is it fails.

param:

login (optional) - login code. If not provided, it gets the current system user
return:

string - resource file path

13.49 set_protocol

get_protocol()
params

string - local or xmlrpc

13.50 get_protocol

get_protocol()
return:

string - local or xmlrpc

13.51 delete_sobject

delete_sobject(search_key)

Invoke the delete method. Note: this function may fail due

to dependencies. Tactic will not cascade delete. This function
should be used with extreme caution because, if successful, it will
permanently remove the existence of an sobject

param:

search_key - a unique identifier key representing an sobject.
Note: this can also be an array.

return:

dictionary - a sobject that represents values of the sobject in the

form name:value pairs

13.52 get_connected_sobject

get_connected_sobject(src_sobject, context=default)

Get the connected sobject

params

src_sobject - the original sobject from which the connection starts
keyparam:

context - an arbirarty parameter which defines type of connection
return:

dict - a single connected sobject

TACTIC Developer

84 /99

13.53 reactivate_sobject

reactivate_sobject(search_key)

Invoke the reactivate method.

param:

search_key - the unige key identifying the sobject.

return:

dictionary - sobject that represents values of the sobject in the

form name:value pairs

13.54 get_unique_sobject

get_unique_sobject(search_type, data={})

This is a special convenience function which will query for an
sobject and if it doesn’t exist, create it. It assumes that this

object should exist and spares the developer the logic of having to
query for the sobject, test if it doesn’t exist and then create it.
param:

search_type - the type of the sobject

data - a dictionary of name/value pairs that uniquely identify this
sobject

return:

sobject - unique sobject matching the critieria in data

13.55 get_connected_sobjects

get_connected_sobjects(src_sobject, context=default)

Get all of the connected sobjects

param:

src_sobject - the original sobject from which the connection starts
keyparam:

context - an arbitrary parameter which defines type of connection
return:

list - a list of connected sobjects

13.56 connect_sobjects

connect_sobjects(src_sobject, dst_sobject, context=default)
Connect two sobjects together
param:

src_sobject - the original sobject from which the connection starts

TACTIC Developer

85/99

dst_sobject - the sobject to which the connection connects to

keyparam:

context - an arbirarty parameter which defines type of connection

return:

dictionary - the last connection sobject created
13.57 set_login_ticket
set_login_ticket(ticket)

Set the login ticket with the ticket key

13.58 generate_ticket

generate_ticket()

Ask the server to generate a ticket explicity used for your own commands

return - a string representing the transaction ticket

13.59 get_ticket

get_ticket(login, password)

Get an authentication ticket based on a login and password.
This function first authenticates the user and the issues a ticket.

The returned ticket is used on subsequent calls to the client api

param:
login - the user that is used for authentications
password - the password of that user

return:

string - ticket key

13.60 set_widget_setting

set_widget_settings(key, value)

Set widget setting for current user and project
param

key - unique key to identify this setting

value - value the setting should be set to
return

None

TACTIC Developer 86 /99

13.61 get_widget_setting

set_widget_settings(key, value)

Get widget setting for current user and project
param

key - unique key to identify this setting
return

value of setting

13.62 update

update(search_key, data={}, metadata={}, parent_key=None, info={}, use_id=False, triggers=True)
General update for updating sobject

param:

search_key - a unique identifier key representing an sobject.

Note: this can also be an array, in which case, the data will

be updated to each sobject represented by this search key

keyparam:

data - a dictionary of name/value pairs which will be used to update

the sobject defined by the search_key

Note: this can also be an array. Each data dictionary element in

the array will be applied to the corresponding search key

parent_key - set the parent key for this sobject

info - a dictionary of info to pass to the ApiClientCmd

metadata - a dictionary of values that will be stored in the metadata attribute if available
use_id - use id in the returned search key

triggers - boolean to fire trigger on update

return:

dictionary - represent the sobject with its current data.

If search_key is an array, This will be an array of dictionaries

13.63 insert_update

insert_update(search_key, data, metadata={}, parent_key=None, info={}, use_id=False, triggers=True)
Insert if the entry does not exist, update otherwise

param:

search_key - a unique identifier key representing an sobject.

data - a dictionary of name/value pairs which will be used to update

the sobject defined by the search_key

keyparam:

metadata - a dictionary of values that will be stored in the metadata attribute if available

TACTIC Developer 87/99

parent_key - set the parent key for this sobject

info - a dictionary of info to pass to the ApiClientCmd
use_id - use id in the returned search key

triggers - boolean to fire trigger on insert

return:

dictionary - represent the sobject with its current data.

13.64 update_multiple

update_multiple(data, triggers=True)

Update for several sobjects with different data in one function call. The
data structure contains all the information needed to update and is
formated as follows:

data = {

search_keyl: { columnl: valuel, column2: value2 }

search_key?2: { columnl: valuel, column2: value2 }

}

params:

data - data structure containing update information for all

sobjects

keyparam:

data - a dictionary of name/value pairs which will be used to update
the sobject defined by the search_key

Note: this can also be an array. Each data dictionary element in

the array will be applied to the corresponding search key

triggers - boolean to fire trigger on insert

return:

None

13.65 insert_multiple

insert_multiple(data, metadata=[], parent_key=None, use_id=False, triggers=True)
Insert for several sobjects in one function call. The

data structure contains all the infon needed to update and is

formated as follows:

data=|

{ columnl: valuel, column2: value2, column3: value3 },

{ columnl1: valuel, column2: value2, column3: value3 }

}

metadata = [

TACTIC Developer 88/99

{ color: blue, height: 180 },

{ color: orange, height: 170 }

]

params:

search_type - the search_type attribute of the sType

data - a dictionary of name/value pairs which will be used to update
the sobject defined by the search_key

Note: this can also be an array. Each data dictionary element in

the array will be applied to the corresponding search key
keyparam:

parent_key - set the parent key for this sobject

use_id - boolean to control if id is used in the search_key in returning sobject dict
triggers - boolean to fire trigger on insert

return:

a list of all the inserted sobjects

13.66 log

log(level, message, category=""default'")

Log a message in the logging queue. It is often difficult to see output

of a trigger unless you are running the server in debug mode.

In production mode, the server sends the output to log files.

The log files are general buffered.

It cannot be predicted exactly when buffered output will be dumped to a file.
This log() method will make a request to the server.

The message will be immediately stored in the database in the debug log table.
param:

level - criticallerrorlwarninglinfoldebug

message - freeform string describing the entry

keyparam:

category - a label for the type of message being logged.

It defaults to "default"

13.67 query

query(search_type, filters=[], columns=[], order_bys=[], show_retired=False, limit=None, offset=None, single=False, dis-
tinct=None, return_sobjects=False)

General query for sobject information

param:

search_type - the key identifying a type of sobject as registered in

TACTIC Developer

89/99

the search_type table.

keyparam:

filters - an array of filters to alter the search

columns - an array of columns whose values should be
retrieved

order_bys - an array of order_by to alter the search
show_retired - sets whether retired sobjects are also
returned

limit - sets the maximum number of results returned

single - returns only a single object

distinct - specify a distinct column

return_sobjects - return sobjects instead of dictionary. This
works only when using the API on the server.

return:

list of dictionary/sobjects - Each array item represents an sobject
and is a dictionary of name/value pairs

example:

filters = []

filters.append(("code", "XG002"))

order_bys = [’'timestamp desc’]

columns = [’code’]

server.query (ticket, "prod/shot", filters, columns, order_bys)

non

The arguments "filters", "columns", and "order_bys" are optional
The "filters" argument is a list. Each list item represents an

individual filter. The forms are as follows:

(column, value) -> where column = value
(column, (valuel,value2)) -> where column in (valuel, value2)
(column, op, value) —-> where column op value

where op is (’like’, ’'<=', ’'>=", ">/ '/ rigl, Il Pl Tyl
(value) -> where value
13.68 redo

redo(transaction_ticket=None, transaction_id=None)
Redo an operation. If no transaction id is given, then the last
undone operation of this user on this project is redone
keyparam:

transaction_ticket - explicitly redo a specific transaction

transaction_id - explicitly redo a specific transaction by id

T~

TACTIC Developer 90/99

13.69 start

start(title, description="")

Start a transaction. All commands using the client API are bound

in a transaction. The combination of start(), finish() and abort()
makes it possible to group a series of API commands in a single
transaction. The start/finish commands are not necessary for

query operations (like query(...), get_snapshot(...), etc).
keyparam:

title - the title of the command to be executed. This will show up on
transaction log

description - the description of the command. This is more detailed.
transaction_ticket - optionally, one can provide the transaction ticket sequence
example:

A full transaction inserting 10 shots. If an error occurs, all 10

inserts will be aborted.

server.start (' Start adding shots’)
try:

for i in range (0,10) :

server.insert ("prod/shot", { ’'code’: ’"XG%0.3d’%i })

except:

server.abort ()
else:

server.finish("10 shots added")

13.70 simple_checkin

simple_checkin(search_key, context, file_path, snapshot_type=""file'", description='"No description'', use_handoff_dir=False,
file_type=""main", is_current=True, level_key=None, breadcrumb=False, metadata={}, mode=None, is_revision=False,
info={}, keep_file_name=False, create_icon=True, checkin_cls=pyasm.checkin.FileCheckin, context_index_padding=None,
checkin_type=""strict', source_path=None, version=None)

Simple method that checks in a file.

param:

search_key - a unique identifier key representing an sobject
context - the context of the checkin

file_path - path of the file that was previously uploaded
keyparam:

snapshot_type - [optional] descibes what kind of a snapshot this is.
More information about a snapshot type can be found in the
prod/snapshot_type sobject

description - [optional] optional description for this checkin
file_type - [optional] optional description for this file_type

is_current - flag to determine if this checkin is to be set as current

TACTIC Developer 91/99

level_key - the unique identifier of the level that this

is to be checked into

breadcrumb - flag to leave a .snapshot breadcrumb file containing
information about what happened to a checked in file

metadata - a dictionary of values that will be stored as metadata
on the snapshot

mode - inplace, upload, copy, move

is_revision - flag to set this as a revision instead of a version
create_icon - flag to create an icon on checkin

info - dict of info to pass to the ApiClientCmd

keep_file_name - keep the original file name

checkin_cls - checkin class

context_index_padding - determines the padding used for context
indexing: ie: design/0001

checkin_type - auto or strict which controls whether to auto create versionless
source_path - explicitly give the source path

version - force a version for this check

return:

dictionary - representation of the snapshot created for this checkin

13.71 group_checkin

group_checkin(search_key, context, file_path, file_range, snapshot_type='"sequence', description=""", file_type=main,
metadata={}, mode=None, is_revision=False, info={})

Check in a range of files. A range of file is defined as any group

of files that have some sequence of numbers grouping them together.
An example of this includes a range frames that are rendered.
Although it is possible to add each frame in a range using add_file,
adding them as as sequence is lightweight, often significantly reducing
the number of database entries required. Also, it is understood that
test files form a range of related files, so that other optimizations

and manipulations can be operated on these files accordingly.

param:

search_key - a unique identifier key representing an sobject

file_path - expression for file range: ./blah.##.jpg

file_type - the typ of file this is checked in as. Default = main
file_range - string describing range of frames in the form ’1
keyparam:

snapshot_type - type of snapshot this checkin will have

description - description related to this checkin

TACTIC Developer

92/99

file_type - the type of file that will be associated with this group
metadata - add metadata to snapshot

mode - determines whether the files passed in should be copied, moved
or uploaded. By default, this is a manual process (for backwards
compatibility)

is_revision - flag to set this as a revision instead of a version

info - dict of info to pass to the ApiClientCmd

return:

dictionary - snapshot

13.72 directory_checkin

directory_checkin(search_key, context, dir, snapshot_type="'"directory', description=""No description'', file_type=main,

is_current=True, level_key=None, metadata={}, mode="copy', is_revision=False, checkin_type=""strict'")

Check in a directory of files. This informs TACTIC to treat the

entire directory as single entity without regard to the structure

of the contents. TACTIC will not know about the individual files

and the directory hierarchy within the base directory and it it left

up to the and external program to intepret and understand this.

This is often used when logic on the exact file structure exists in

some external source outside of TACTIC and it is deemed too complicated
to map this into TACTIC’s snapshot definition.

param:

search_key - a unique identifier key representing an sobject

dir - the directory that needs to be checked in

keyparam:

snapshot_type - type of snapshot this checkin will have

description - description related to this checkin

file_type - the type of file that will be associated with this group
is_current - makes this snapshot current

level_key - the search key of the level if used

metadata - add metadata to snapshot

mode - determines whether the files passed in should be copied, moved
or uploaded. By default, this is copy

is_revision - flag to set this as a revision instead of a version

checkin_type - auto or strict which controls whether to auto create versionless

return:

dictionary - snapshot

TACTIC Developer

93/99

13.73 get_column_names

get_column_names(search_type)

This method will get all of the column names associated with a search
type

param:

search_type - the search type used to query the columns for

return

list of columns names

13.74 get_parent

get_parent(search_Kkey, columns=[], show_retired=True)

Get the parent of an sobject.

param:

search_key - a unique identifier key representing an sobject

keyparam:

columns - the columns that will be returned in the sobject

show_retired - it defaults to False so it does not show retired parent if that’s the case
return:

dictionary - the parent sobject

13.75 get_types_from_instance

get_types_from_instance(instance_type)

Get the connector types from an instance type

param:

instance_type - the search type of the instance

return:

tuple - (from_type, parent_type)

a tuple with the from_type and the parent_type. The from_type is
the connector type and the parent type is the search type of the

parent of the instance

13.76 undo

undo(transaction_ticket=None, transaction_id=None, ignore_files=False)
undo an operation. If no transaction id is given, then the last

operation of this user on this project is undone

keyparam:

transaction_ticket - explicitly undo a specific transaction

transaction_id - explicitly undo a specific transaction by id

ignore_files - flag which determines whether the files should

also be undone. Useful for large preallcoated checkins.

TACTIC Developer 94 /99

13.77 get_widget

get_widget(class_name, args={}, values={})

Get a defined widget

params:

class_name - the fully qualified class name of the widget
keyparams:

args - keyword arguments required to create a specific widget
values - form values that are passed in from the interface
return:

string - html form of the widget

example:

class_name = TableLayoutWdg

args = {

view: manage,

search_type: prod/asset,

}

widget = server.get_widget(class_name, args))

13.78 set_project

set_project(project_code)

Set the project code

13.79 execute_python_script

execute_python_script(script_path, kwargs)

Execute a python script defined in Script Editor

param:

script_path - script path in Script Editor, e.g. test/eval_sobj
keyparam:

kwargs - keyword arguments for this script

return:

dictionary - returned data structure

13.80 insert

insert(search_type, data, metadata={}, parent_key=None, info={}, use_id=False, triggers=True)
General insert for creating a new sobject
param:

search_type - the search_type attribute of the sType

TACTIC Developer

95/99

data - a dictionary of name/value pairs which will be used to update
the sobject defined by the search_key.

parent_key - set the parent key for this sobject

keyparam:

metadata - a dictionary of values that will be stored in the metadata attribute
if available

info - a dictionary of info to pass to the ApiClientCmd

use_id - use id in the returned search key

triggers - boolean to fire trigger on insert

return:

dictionary - represent the sobject with it’s current data

example:

insert a new asset

search_type = "prod/asset"

"code’: chr001,
"description’: ’'Main Character’

insert (search_type, data)

insert a new note with a shot parent

get shot key
shot_key = server.build_search_key (search_type=’'prod/shot’

data = {
"context’: 'model’,
"note’: 'This is a modelling note’,
"login’: server.get_login()

server.insert (search_type, data, parent_key=shot_key)

insert a note without firing triggers

search_type = "sthpw/note"
data = {
"process’: 'roto’,
"context’: ’'roto’,

"note’: ’'The keys look good.’,
"project_code’: ’"art’

server.insert (search_type, data, triggers=False)

13.81 get_pipeline_processes

get_pipeline_processes(search_key, recurse=False)

, code="XG001")

TACTIC Developer 96 /99

DEPRECATED: use get_pipeline_processes_info()

Retrieve the pipeline processes information of a specific sobject.
param:

search_key - a unique identifier key representing an sobject
keyparams:

recurse - boolean to control whether to display sub pipeline processes
return:

list - process names of the pipeline

13.82 get_related_types

get_related_types(search_type)

Get related search types given a search type

param:

search_type - the key identifying a type of sobject as registered in
the search_type table.

return - list of search_types

13.83 get_child_types

get_child_types(search_key)

Get all the child search types

param:

search_key - a unique identifier key representing an sobject
return:

list - the child search types

13.84 set_server

set_server(server_name)

Set the server name for this XML - RPC server

13.85 get_info_from_user

get_info_from_user(force=False)

Get input from the user about the users environment. Questions
asked pertain to the location of the tactic server, the project worked
on and the user’s login and password. This information is stored in
an .<login>.tacticrc file.

keyparam:

force - if set to True, it will always ask for new infomation from the

command prompt again

TACTIC Developer 97 /99

13.86 update_config

update_config(search_type, view, element_names)
Update the widget configuration like ordering for a view
param:

search_type - search type that this config relates to
view - view to look for the element

element_names - element names in a list

return:

string - updated config xml snippet

13.87 execute_pipeline

execute_pipeline(pipeline_xml, package)

Spawn an execution of a pipeline as delivered from
get_pipeline_xml(). The pipeline is a xml document that describes

a set of processes and their handlers

param:

pipeline_xml - an xml document describing a standard Tactic pipeline.
package - a dictionary of data delivered to the handlers

return:

instance - a reference to the interpreter

13.88 get_base_dirs

get_base_dirs()

Get all of the base directories defined on the server
return:

dictionary of all the important configured base directories

with their keys

13.89 get_paths

get_paths(search_key, context=""publish'', version=-1, file_type=main, level_key=None, single=False, versionless=False)
Get paths from an sobject

params:

search_key - a unique identifier key representing an sobject

keyparams:

context - context of the snapshot

version - version of the snapshot

file_type - file type defined for the file node in the snapshot

TACTIC Developer 98 /99

level_key - the unique identifier of the level that this

was checked into

single - If set to True, the first of each path set is returned

versionless - boolean to return the versionless snapshot, which takes a version of
return

A dictionary of lists representing various paths. The paths returned

are as follows:

* - client_lib_paths: all the paths to the repository relative to the client
* - lib_paths: all the paths to the repository relative to the server
- sandbox_paths: all of the paths mapped to the sandbox

» - web: all of the paths relative to the http server

13.90 get_virtual_snapshot_path

get_virtual_snapshot_path(search_key, context, snapshot_type=""file'", level_key=None, file_type=main, file_name=’, mkdirs=Fal
protocol="client_repo, ext="")

Create a virtual snapshot and returns a path that this snapshot

would generate through the naming conventions. This is most useful

testing naming conventions.

param:

snapshot creation:

search_key - a unique identifier key representing an sobject
context - the context of the checkin

keyparam:

snapshot_type - [optional] descibes what kind of a snapshot this is.
More information about a snapshot type can be found in the
prod/snapshot_type sobject

description - [optional] optional description for this checkin
level_key - the unique identifier of the level that this

is to be checked into

keyparam:

path creation:

TACTIC Developer

99/99

file_type - the type of file that will be checked in. Some naming
conventions make use of this information to separate directories

for different file types

file_name - the desired file name of the preallocation. This information
may be ignored by the naming convention or it may use this as a

base for the final file name

mkdir - an option which determines whether the directory of the
preallocation should be created

protocol - It’s either client_repo, sandbox, or None. It determines whether the
path is from a client or server perspective

ext - force the extension of the file name returned

return:

string - path as determined by the naming conventions

13.91 get_plugin_dir

get_plugin_dir(plugin)

Return the web path for the specfied plugin
params:

plugin - plugin name

return:

string - the web path for the specified plugin

	Developer Start-up
	Development Concepts
	Architecture Overview
	The TACTIC Script Editor
	Setting Up a Development Environment

	Client API
	Client API Setup
	Client API Structure
	Basic Operations in Python and Javascript
	Checkin / Checkout Operations
	Snapshot Dependency
	Custom Widget Basics
	Performance
	Navigating Search Type Hierarchy

	Changes
	Search ID to Search Code

	Custom Widgets
	Custom Layout Editor
	Widget Development
	Widget Architecture

	Plugins
	Plugin Manager interface
	Create a Plugin
	Packaging a Plugin
	Plugin Versions

	Expression Development
	Using Expressions in Scripting

	Validation
	Validation Set-up

	Async Loading
	Asynchronous Loading

	Messaging
	Messaging

	Triggers
	Python Trigger in Tactic Editor Guideline
	Triggers

	Checkins
	Tactic Checkin Process
	Custom Checkin Pipeline

	Conventions
	Naming Convention Classes

	TACTIC Python Client API Reference
	abort
	add_config_element
	add_dependency
	add_dependency_by_code
	add_directory
	upload_file
	add_file
	add_group
	add_initial_tasks
	split_search_key
	build_search_key
	get_by_search_key
	get_parent_type
	build_search_type
	create_search_type
	checkout
	clear_upload_dir
	set_current_snapshot
	get_expanded_paths_from_snapshot
	get_all_paths_from_snapshot
	get_path_from_snapshot
	get_snapshot
	create_snapshot
	create_task
	download
	eval
	execute_cmd
	finish
	get_all_children
	query_snapshots
	get_by_code
	get_dependencies
	get_all_dependencies
	get_server_version
	get_client_version
	get_client_api_version
	get_server_api_version
	get_home_dir
	get_client_dir
	get_handoff_dir
	set_config_definition
	get_config_definition
	get_table_info
	get_column_info
	get_md5_info
	get_pipeline_processes_info
	get_preallocated_path
	get_resource_path
	set_protocol
	get_protocol
	delete_sobject
	get_connected_sobject
	reactivate_sobject
	get_unique_sobject
	get_connected_sobjects
	connect_sobjects
	set_login_ticket
	generate_ticket
	get_ticket
	set_widget_setting
	get_widget_setting
	update
	insert_update
	update_multiple
	insert_multiple
	log
	query
	redo
	start
	simple_checkin
	group_checkin
	directory_checkin
	get_column_names
	get_parent
	get_types_from_instance
	undo
	get_widget
	set_project
	execute_python_script
	insert
	get_pipeline_processes
	get_related_types
	get_child_types
	set_server
	get_info_from_user
	update_config
	execute_pipeline
	get_base_dirs
	get_paths
	get_virtual_snapshot_path
	get_plugin_dir

