TACTIC Developer

Table of Contents

DY oo g = LU | o 4
D= Y= o]l a= g1 A @] g Tor=: o) =N 4
ATCIITECIUIE OVEIVIEW .etiiiiiii et e e e e et e e e e et e e e e e et e e e e et e e e e e at e e e e st e e eeatnn s 4
SR A O I L ORs o o L o 1 (o P 7

L= 0| N . PSPPSR 12
L@ 7= g N = = (1o PSP 12
(@1 o A o S 1 (1 11 USSP 15
Basic Operations in Python and JAVASCIIPLcovuniiiiiiii e e e e e 17
Checkin / CheCKOUL OPEIaLIONSu.iiiiuieiieeiiie i e e e e e e e e e e e e e e e et e e et e ett e eaa e e et e eetnaeeanaees 21
S g 01 0 A D= o= 10 = 0 27

L1370 10 == N 29
S o A D R (o IS = o 1 o [PR 29

LTS (o VAV [0 = 30
LAY Ao o L= N (11 (= ox (0 PPN 30
LOU Lo g T = Yo U | = [(o N 34
CUSIOM WIAJEL BASICSiiviiiiiiciiii e e e e e e e e e e e e r e et e e et e e et e e et e e et e e e at e e et e e et e eetneeerneeees 41
LAY o 0T D= V7= T o] 1= | N 49

1T PP 57
VoY = = o = G T 01 = - o P 57
(@077 (=T B 1o o 58
102 = 01010 - W0 e 0o 1o P 60

(o= o T D=V 7= o] 01 o) P 61
USING EXPreSSIONS iN SCHPLNG .vvuuiitteiiiieii e e e e e s e e e e e e e et e e et e e et e e et e e st e e st e e st estnseesnnaaannaaes 61

RV T = 1 o o PP 63
RV 1T = o TS = o T PN 63

TACTIC Python Client APl REFEIENCEuuiiiiiiiii e e e et e eaaees 64
1111 S PN 65
a0 o PSSP 66
=T (o [ool 01 1T = =12 0| S 67
=T (o [0 1= o= 4o = o Y R 69
add_dependenCy DY COOEo.uiiiiiiiii e e 70
=T (o [o 1 =1ox (o Y/ P 71
T o [1 PP 73
F=T [0 [o {010 T PP 76
oo o g = = S 2SR 77
Lo LU] o == ox T (=Y 78
o LU T o IS = ox T Y o L= 79
(o010 1 | PSP 80
Lo == g0 1 =T o 1 PR 81
(o= LY = (o T Y/ 0= P 82
o= LY 7= 01 00 PP 83
Lo 1= | (= ' QPN 84
(0 S L= LTS o] oo AP 85
Lo 0= (o YA v 1= (1 o PPN 86
Lo (0111701 o= o LSO 87
L= 7 PP 88
== w11 o 120 P 89

TACTIC Developer

LG o 01T o1 = 11PN 90
LG o 01T o) 100 A TS 1o (S 91
L4 P 92
Lo = 0= e 111 (o (= o PN 93
Lo =l 0 U= 0= 0 (= Vo= PR 94
get_all_paths from SNaRSNOLiiii e 95
Lo =l 0= <Y o [£ 96
Lol oV == (o (1 =,/ 97
Lo = A 11 Lo [0/ = P 98
Lo e 1T= o La=! o L= £= o o RPN 99
Lo 0l 1= oL o 1 PP 100
Lo = e TT= o LAY £ o] I PP 102
Lo = Al /o 1000 o TN T o) TN 103
o= Ao 1000 o T =102 L= 104
o= a0 11 To [(= 11 a1 (1o o 105
Lo a0 L= 0 =010 (= oo == P 106
get_expanded paths from SNAPSNOLciviiiiiiie e 107
Lo S a0 LIS =101 1 1 1 PP 108
(o Al 007 (o o1 109
o 0l 0700 01T o 1 PP 110
(o= a1 T o) ¢TI = SN 111
(o = Al .01 T 1) T 112
[0 0= = | PSPPI 113
[0 0= = o L £ L= PP 114
get_path from SNARSNOLvei e 115
Lo A = 1 117
ol o] o L= HT gL o 0o = 118
get_ PIPEliNE PrOCESSES INFO ..uiiiiiiiii e e e e e e e e e e et e e et e e et e et e e aneeeanns 119
Lo =l o1 o L= 1T L= 1 PP 120
get PIPElINE XML INFO Louiiiii e e e e 121
get_preallocated Pathccoouiiiiii e 122
o A oo (]) 124
(o Sl (= = 0= o [1 1= PP 125
Lo Sl (== 01U oY o o NS 126
Lo Sl = VL= - o /= £ 1) o PN 127
(o Sl = V4= VL= = o L PP 128
Lo = =0 21 NS 129
Lo = €= o 1T 1 1o T 131
Lo = A (o = 132
JEL tYPES frOML INSIANCE .ouiiiiiiiii e e e e e e e e et r e e et e e et e e et e e e et e e e e et e eeanaees 133
[0 = A a0 LTS o] o = ox A 134
get virtual SNAPSNOL PAth ...ooeeiii i e 135
o T/ o [0 = 137
Lo = a0 (o T= A =111 o 138
Lo o180 o2 21=o: (1 o P 139
0= o P 140
LTS = A 1 10 (T 142
LTS = U100 (S 143
oo P 144
[0 T PP 145
Lo 0= YR 7= 01] 147
(== o LA (ST o) o= ot 148
1= [0 PSPPI 149
L= (LY o] o 1= o: S 150

TACTIC Developer

LS 01 (= A =)0 1 PN 151
S = A oo [T (o = A 152
£ = 0 (0= o: P 153
£ 0 (000 | PP 154
S = YL PP 155
S L [0 = A = 111 156
S Lo =T 0= (1 T 157
ST SBAICN KBY coeeiii e e a e 159
£ PSP 160
0o o PP 161
(0100 (R 162
(07070 = (T o0) 1 o [N 163
(07070 = (T 14101 o] =P 164
(070! oo I {1 P 165

TACTIC Developer

Developer Start-up

Development Concepts

Introduction

Theterm "asset” is used often, and has many different meanings in different industries and even in different areas of
the same production facility. In TACTIC, an asset is an atomic entity with metadata and files associated with it. To
avoid confusion, the TACTIC assets are called "searchable objects,” shortened to sObjects.

sObjects

sObjects are the atomic entities (or assets) that TACTIC uses to manipulate data and check in files. An sObject can
be any entity required in a production. Examples of sObjects include shots, textures, users, tasks, production notes,
and so on.

Every sObject must belong to a search type, also known as sType. Search types are a set of unique string entities
that serveto classify all variations of sObjects. Search types areregistered in the "search_object” tablein the " sthpw"
database. This table defines the properties for each search type, and is used to ensure that sObjects adheres to their
search type properties. For instance, in a custom project, you may have a custom/shot sType created for shot. Once
it's registered, you can add shot entriesin the shot table that it generates. The shot entries are the shot sObjects.

It is technically possible to store data on assets anywhere, but the TACTIC approach is to use an SQL database so
sObject data can be tracked in the database and rules can be enforced. In TACTIC, each sObject is represented as a

table in the database. All sObjects for your project are stored in a project-wide database and cross-project sObjects
(for example, those related to users) are stored in the main TACTIC database "sthpw."

Architecture Overview

The TACTIC architectureis an MV C architecture with the following major components:

SObject - Model(M) Provides the data model. All interactions with the data model use sObjects
and their derived classes.

Widget - View(V) Provides the display model, which determines the user interface and how
users interact with the web application. The display architecture is built
upon hierarchical widgetsthat are SObject-aware (that is, they use sObjects
to define the interface).

Command - Command(C) Provideshigher-level interactionswith thedatamodel. All actionsaffecting
the data model or the filesystem must go through a command layer so that
the changes can be tracked and completely undoabl e should something go
wrong.

Search Provides a search model so widgets can obtain the SObjects they need
to complete the interface display. Each type of sObject has a registered
name which is used in the search engine to identify which sType to search.
This provides a consistent interface to access all sObjects regardless of the
location of the sObject in the database or table.

In summary, widgets make use of the Search, get SObjects, and use commands to change persistent data. The sObject
communication unit binds the view layer with the data model.

TACTIC Developer

Main Data Objects

SObjects (searchable objects) are atomic, self-contained units that contain attributes. A particular sObject can be
uniquely identified by two parameters: a search type and asearch | D. Often these two parameters are combined into a
"search key" defined as <search_type>|<search_id> (joined with the"[" character). Search keysallow you to uniquely
identify any SObject using asingle string.

Particular SObjects are obtained using the search engine, which generally returnsalist of SObjects. The search engine
isflexible enough to allow arbitrary bits of SQL code to be used for a search, although that approach is discouraged.
(Tomaximize codereuse, it isbetter to put SQL codeinsidethelow-level business objectsthat provide static functions
to higher level parts of the framework.)

Widgets are the atomic drawing units. Typically, widgets are SObject-aware and can perform and affect searches
and draw SObjects. Widgets can contain children, and many function calls will traverse down to their children. For
example, awidget can be assigned a search object. It will perform this search and passthe resultsto all of its children
widgets, who will make use of the result as necessary.

One important widget function is the get_display() function, which draws widgets and can generate HTML. This
function can be as ssimple asjust drawing something that has nothing to do with sObject data, or can be acomplicated
function retrieving and displaying sObjects and all of their child sObjects.

Widgets

Widgets determine how users interact with the web application. They have a number of useful propertiesthat allow
for the rapid development of web applications. For example, they can have a search assigned to them to locate and
retrieve sObjects. They can typically perform actions across the search results, affecting multiple SObjects.

Widgets call events and listen to events, allowing for inter-widget communication. They interact with each other in
the web application by registering events. For example, one widget, on initialization, may register itself asalistener
for anamed event. Another widget may call the named event upon an arbitrary action, at which point al widgets that
are registered listeners for that event will be executed. This type of interaction alows for multiple actions to occur
as aresult of auser interaction, such asthe click of asingle button.

Checkin/checkout isthe framework for filesystem interaction. All interaction within the checkin/checkout framework
is done through the SObjects themselves so that they can determine their own checkin/checkout conditions and
mechanisms. The checkin framework creates a 'snapshot' SObject that is related to the original SObject through a
search _id. It assigns a unique file ID for every transaction, and creates snapshot attributes for the SObjects.

Engineering requirements for a particular application must be gathered and translated into widgets, including
definitions of the widgets' relationships to each other.

AJAX Widgets

TACTIC's widget hierarchy falls naturally within the AJAX paradigm, where widgets are capable of redrawing
themselves. Instead of refreshing the entire page, AJAX widgets actively gather the required information from the
page and send only that information to the web server (as opposed to the entire contents of the page). The widget
then processes the information and updates itself. This technique makes a much more interactive application because
the web server only has to draw the individual widget element instead of the entire page. In addition to afaster and
more interactive experience, AJAX widgets significantly reduce the overall load on the web server, making TACTIC
far more scalable with the same resources.

TACTIC's interface runs on top the the client API, therefore all interaction between the client and the server run
on an XMLRPC layer resting on top of AJAX. Thisis very convenient for complex interactions between the client
and the server.

Web Drawing Engine

TACTIC Developer

Thisdrawing engineisbased on numerousinterface platformsgenerally geared towardstraditional application design.
However, it has be adjusted to accommodate the unique web environment. A typical application would define a
number of predefined widgets and assemble them in a hierarchical relationship.

Specialized widgets must be created to serve specific functions: for example, checkin/checkout widgets, download
widgets, upload widgets, and navigation widgets.

Persistent Store

All metadata is stored in an industry-standard SQL database. The database tables and rows are clearly marked and
readable, so it is easy to access the data directly. In today's fast-changing environment, it is essential to be able to
quickly read and understand the underlying data stored to be able to maintain proper support for diagnosing and
fixing problems.

All datais accessed through sObject entities, which provide the object relational mappings to the database tables. In
general, a single sObject is represented by arow in the table of a database. The table defines the type of SObjects
stored in it, and there is usually a one-to-one relationship between the attributes of each sObject and the columns
in the database.

Directory and File Naming Conventions

It isjust as critical to be able to navigate the filesystem and understand what is located there. Therefore, advanced
naming conventions are filtered through naming classes, which use clear procedures to create filenames based
on metadata in the database. On the other hand, naming conventions can be driven by some expressions such as
{'sobject.code} { snapshot.context} v{snapshot.version} {ext}.

Directories and file naming are handled slightly differently. TACTIC builds file names procedurally and then stores
them in the database. On the other hand, TACTIC never stores directory names directly in the database, but always
builds them up procedurally. This additional level of abstraction provides the opportunity to reorganize your asset
structure as needed (because the directory structure isn't hard-coded). Note that there may be other dependencies
that are outside the control of TACTIC, so great care must be taken should you decide to reorganize the directory
structure of your assets.

TACTIC Developer

The TACTIC Script Editor

The TACTIC Script Editor allows for Javascript and Python based scripts to be written and stored in a "custom
script" sObject. These scripts harness the power of Javascript in the web browser along with the power of the Python
TACTIC Client API. They can be structured to run on a general execution, by atrigger or, they can be attached to
a button to execute for a specific sObject.

One of the main benefits with using this method of custom scripting in TACTIC is that the script writer does not
have to have direct access to the server'sfile system.

TACTIC Script Editor =]

Run Save Clear E

Code: |TPROJECT_TEMPLATE Script Path: |trigger5 !|generate_video_thumbnail
BOT 9 [on o] [seanl=] S Saved Scripts

» | | chart it
+ chart_test
+ process_chart
eXpEnses
that thumbnails wi b ated - +add_expense
1 mobi

+ review_mobi_wdg
placing the rendered thumbnail test

+ calendar_test

+expr_test

+get_login

+get_widget

+ schedule_test

tests

+get_tasks

triggers

+ expense_budget_update

h, thumb path + generate_video_thumbnail
+task_budget_update
+task_burndown_update

+work_hour_budget_update
de, thumb path, file type . utility

m

+
ingest_dir_assets_w_keywords
Position: Ln1,Ch1 Total: Ln 23, Ch 678 4 +

Toggle editor ingest_file_assets_w_keywords -

Outputting to the Debug_Log Table With The
TacticServerStub.log() Function

The TacticServerStub.log() method writes to the table named 'debug_log' in the sthpw database.

The first parameter of the TacticServerStub.log() method is named level. The argument for level can be one of the
following keywords:

level ‘critical | error | warning | info | debug - arbitrary debug level category

The TacticServerStub.log() method can be used as follows:

var server = TacticServer Stub. get()
server. | og('debug',' M/ | og nessage for the debug group.')

The debug level argument provides the convenience of grouping the Debug Log table by debug levels. This table
can be found under:

Admin Views-> Server -> Debug L og

TACTIC Developer

Debug Log =
2 = i @& 5 items found w T L ?
[Category Level Message Timestamp Login

default debug debug level message May 23, 2012 - 10:10 admin
default info info level message May 23, 2012 -10:12 admin

[
[
[default warning warning level message May 23, 2012-10:13 admin
[default error error level message May 23, 2012 -10:13 admin
=

default critical critical level message May 23, 2012 - 10:14 admin

Note

These 5 debug levels are arbitrary.

The only purpose the levels serve are to group the messages when they are sorted in the table.

Outputting to the TACTIC Web Client Output Log With The log
Methods

While writing scriptsin the TACTIC Script Editor, messages can be output to the Web Client Output L og.

Below are the 5 Javascript methods in use. The most vocal method, log.critical(), is at the top:
TACTIC Script Editor

Code: CUSTOM_SCRIPTO0021 | Script Path: test

ke '@ = B pt E| |Javascript

1y .
|I r

log.critical ("My criticael message.

ELLOL

ITEENing

Below is the Output Log console from above the sample script. It can be found under:

Main Gear menu -> Tools-> Web Client Output L og.

TACTIC Developer

TACTIC™ Web Client Qutput Log

Clear

The level of the log messages which appear in the Javascript Output Client Log can be controlled. The level can be
adjusted under: My Admin -> User Preferences.

My Preference +
2 H .l 2
Title Description Value
check-in
debug
Debug Determines whether to show
debug information &)
Web Client Determines logging level used
Logging Level by Web Client Output Console
Pop-up ERROR %
. WARNING
display NFO
general DEBUG

Below isatabletoillustrate what the setting for each level will display

critical setting |only display messages that are from log.critical ()

error setting only display messages that are from log.critical () or log.error()

war ning setting |only display messages that are from log.critical() or log.error() or log.warning()
info setting only display messages that are from log.critical() or log.error() or log.warning() or log.info()

debug setting only display messages that are from log.critical() or log.error() or log.warning() or log.info() or
log.debug()

For example, if theWeb Client Logging Level isset inthe preferencesto thewar ning level, wewill only see messages
that are from log.warning(), log.error() and log.critical (). ie. Only messages at the same level or above that level will
be displayed in the Web Client Output Log.

TACTIC Developer

Web Client Determines logging level used by Web Client Cutput Console Pop-up | WARNING
Logaging Level
TACTIC Script Editor
play TACTIC™ Web Client Output Log
1eral

Code: CUSTOM_SCRIPTO0021

Script Path: |test

Client APl JavaScript Samples

Example 1: Insert A New sObject

/1 1 NSERT A NEW SOBJECT

0 o G kI =

var server = TacticServerStub. get();
var code = "truck";
var asset_name = "truck";
var description = "A nodel of a truck.";
var search_type = "toy_factory/lego_set";
var project = "toy_factory";
var data = {
' code': code,
'‘name' : asset _nane,
‘description': description
b
var search_key = server. build_search_key(search_type, code,
var result = server.insert(search_type, data);
| og. debug(result);

Results after insert:

Preview Name Description

model crane A model of a crane.

Example 2: Get An sObject by Its Search Key

/1l GET BY SEARCH KEY
var server = TacticServer Stub. get();

var search_type = "toyrus/|ego_set";
var code = "nodel _crane";
var project = "toyrus";

HOET 9

log.criticael ("My critical messa

[

log.
log-
log.

ELEOE 12

warning

info

log.debug

proj ect);

10

TACTIC Developer

var search_key = server. buil d_search_key(search_type, code,
var result = server.get_by_search_key(search_key);
alert(result.description);

server.| og("debug", result);

Results after get_by search_key():

A maodel of a crane.

—

Example 3: Update An Existing sObject
/1 UPDATE EXI STI NG SOBJECT

var server = TacticServer Stub. get();

var code = "nodel _crane";
var project = "toyrus";
var asset_nane = "nodel crane";

var description
var search_type
var data = {
‘code': code,
'nane' : asset_nane,
‘description': description

"Revi sed description of a crane.";
"toyrus/| ego_set";

iE

var search_key = server. buil d_search_key(search_type, code,
var result = server.update(search_key, data);

server.| og("debug", result);

Results after update:

Preview Name Description Notes

model crane Revised description of a crane.

Example 4: Retire An Existing sObject
/1 RETIRE AN EXI STI NG OBJECT

var server = TacticServerStub. get();

var search_type = "toyrus/|ego_set";
var code = "nodel _crane";
var project = "toyrus";

var search_key = server. build_search_key(search_type, code,
var results = server.retire_sobject(search_key);
server.| og("debug", result);

Results after retire:

Preview Name Description Notes

project);

project);

project);

11

TACTIC Developer

Client API
Client API Setup

Important Note

Visit the Southpaw support site for more examples and tutorials on the APl and its usage. The Support site is the
place to go for wikis, forums, examples, and more.

Setup

The easiest way to interact with the server from the client using the Client API is to use the provided server stub
code. Thiscodeincludesaclass and autility that are very useful for handling many of the details around client/server
interaction and authentication.

The server stub code is housed in a client folder and can be found in the TACTIC installation in the directory:

<tactic_install _dir>/src/client

Thefirst step isto copy the entire client folder over to the client machine (the machine that will be running the scripts)
to adirectory that will bevisibleto the user. Most facilitieswould likely put thisfolder in acentralized location so that
every computer would be able to execute its scripts. The path to this folder must be specified in the PY THONPATH
environment variable on client machines so that it can be found by the scripts. For instance, if PY THONPATH =
L:/custom_python. you would put the client folder in L:/custom_python. Please refer to the Python documentation
for more information.

Settings
There are three important parameters for setting up the TacticServerStub to connect correctly :

* server: specifies the server that the server stub will connect to. This server can be a domain name ("localhost™)
or an |IP address ("127.0.0.1"). It can even be a port number (*localhost:9000"). This setting alows you to switch
between various TACTIC serversin your facility.

» project: specifiesthe current project. In TACTIC, the project is a state under which interactions occur.

« ticket: specifies the authentication ticket, along a pha-numeric string that encrypts the login and password so that
these values remain secure.

There are anumber of methods to set these parameters.

Thefirst method isto set the following parameters directly in the server stub reference:

server = TacticServer Stub()
server.set_server(tactic_server)

server.set _project (project)

this is not needed if you have run python get_ticket. py
server.set _ticket(ticket)

These settings override all settings obtained elsewhere. This method ensures that these values are set up correctly
based on some external information.

To set up aserver stub, you can insert the stub information in your script (described in the client APl documentation
as part of the get_ticket() function). Or, you can run the script get_ticket.py, which isincluded with the client API
example set (located in <TACTIC_INSTALL_DIR>/src/client/bin). When the stub is run, it creates aticket file on
the user's machine which will be used each time any API script isrun to authenticate which user is running the script.

12

TACTIC Developer

The second method is through environment variables set up across the studio:
 TACTIC _SERVER: setsthe server that the server stub will connect to.

e TACTIC_PROJECT: setsthe project that the server stub will connect to.

e TACTIC_TICKET: setsthe authentication ticket.

This method can be used by programs that set up user environments, and has other advantages. It is easy to switch
the settings using a shell variable. The program that sets up the environment does not have to be written in Python.
It can even be simple to set up by using a shell command line to set the environment variables.

The third method makes use of aresource file located in the user's home directory. This resource file has asimple
format:

| ogi n=j oe

server =l ocal host

ticket =97d2bec3d73da71cl1l4f b724a47af 5053
pr oj ect =bar

Thelogin tag doesn't actually do anything here, since the user name is encapsulated in the ticket itself.

The fourth method is described below:
Alternative way of using TacticServerStub without a ticket file

Alternative way of using TacticServerStub without a ticket file

If you have written a GUI or have some means of retrieving the user's password on individual session instead, you
can use the following construct to set the ticket. The server's IP and project should be set beforehand.

server = TacticServer Stub. get ()
server | P = "10.10.50. 100’
my.set _server (server_| P)

my. set _proj ect (' sanpl e3d')

ticket = my.get_ticket(login, password)
my.set _ticket(ticket)

Once you have set up the environment for the client API to run correctly, you can try a sample script. The following
simple script illustrates the structure of a TACTIC Client API program:

i mport sys
fromtactic_client_lib inmport TacticServerStub

def main(args):

server = TacticServer Stub()
server.start("Ping Test")
try:

print server. ping()
except:

server. abort ()

rai se
el se:

server. finish()

if _name__ =="'__main__":
execut abl e = sys. argv[0]
args = sys.argv[1l:]
mai n(args)

13

TACTIC Developer

This simple program will ping the server and return "OK". If everything is set up correctly, you should be able to
run this program from a shell as follows:

pyt hon ping. py
(0.6

If you see "OK", then you have successfully connected to the TACTIC server using the client API.

If you need to run python get_ticket.py first, it can be found under: client/bin/get_ticket.py.

14

TACTIC Developer

Client API Structure

Directory Structure

Theclient API filesarelocated in thedirectory <tactic_install_dir>/src/client. Thisdirectory containsall thefilesneed
for theclient API. Typically you would copy al of thefilesin thisdirectory to alocation visibleto the client machine.

There are anumber of directoriesin this Client API directory:

« bin: contains useful supported scripts.

* test: contains unit tests for the client API.

« examples: contains a number of small examples to be used for reference.
e tactic_client_lib: the main directory for the Client API.

The main directory "tactic_client_lib" is the base module that you will use to access al of the TACTIC client APIs.
Typically, you would import this module when working with the client API:

fromtactic_client _lib inmport TacticServer Stub
There are a number of subdirectories under tactic_client_lib:

 tactic_server_stub.py: containsthe main server class " TacticServerStub”. This class encapsulates all interactions
tothe TACTIC server and is generally the primary class used with the client API.

¢ (ALPHA) application: contains all the classes that deal with interaction with third-party applications. It provides
an abstraction layer for applications and allows you to set data that can be used by TACTIC's introspection
(verification).

e common: contains a number of convenience functions that are commonly used.

e interpreter: contains the client-side pipeline interpreter. This interpreter executes pipelines defined on the
TACTIC server. These pipelines can be used to create highly complex modular client-side processes. Typical uses
are for the checkin and checkout pipelines.

« test: contains a number of test classes used by the unit tests.

Y ou should point to the Client API by having the directory src/client/tactic_client_lib stored somewhere accessible
to client machines. Import the Tactic_Server_Stub with the following line in your script from tactic_client_lib:

i mport Tactic_Server_Stub

(For more details, visit the Southpaw Support site.)

tactic_server_stub.py

This module contains the TacticServerStub class, which encapsulates al interactions with the TACTIC server. This
class lets you make full use of the TACTIC architecture in your custom applications. Although the TacticServerStub
can be instantiated, it is often preferable to use it as a singleton so you can set up the server once and make use of
it from various locations in your applications:

fromtactic_client_lib inport TacticServerStub
server = TacticServer Stub. get ()

Onceyou have areference to the TacticServerStub, you must set it up using three essential parameters: server, ticket,
project. These parameters are described in more detail in the client APl setup documentation.

15

TACTIC Developer

Interpreter

This directory contains all the code needed to execute pipelines on the client. Pipelines in TACTIC are arbitrary
process flow graphs. These pipelines have a number of advantages over other methods:

They promote reusability, with each process handler having a consistent interface from which it can extract
information. Typically, handlers are like mini programs which for the most part are compartmentalized and have
little to do with each other.

They can be visualized. Using the pipeline editor, the entire flow of the pipeline can be graphically visualized
They can be specialized. Each aspect of the pipeline can be written by those team members most suited for the task.

They lower the bar to creating complex pipelines. With alargelibrary of well-written handlers, it becomes possible
for non-developersto create pipelines by graphically piecing processes together.

application

This directory handles all of TACTIC's interaction with third-party applications.

NOTE: this section is till in active development.

16

TACTIC Developer

Basic Operations in Python and Javascript
Note

If you havenn't done so, please review the Client APl Setup doc.
Simple Ping

The following is a skeleton script interacting with the Client API:
fromtactic_client_lib inport TacticServerStub

def main():

server = TacticServer Stub()
server.start("Ping Test")
try:

print server. ping()
except :

server. abort ()

raise
el se

server. finish()

if name__ =="'__main__
mai n()

Executing this script will give the following output:

$ pyt hon exanpl es/ pi ng. py
oK

If you haven't had aticket in the user directory, please run python get_ticket.py. Otherwise, you will get an error
like this:

File "G\TSI\3.0_client\client\tactic_client_lib\tactic_server_stub. py"
line 2789, in _setup raise Tacti cApi Exception(nsg)
tactic_client_lib.tactic_server_stub. Tacti cApi Exception
[C:/sthpw etc/<soneuser>.tacticrc] does not exist yet. There is not enough
information to authenticate the server. Either set the appropriate environnent
vari abl es or run get_ticket. py

Thefirst line imports the TacticServerStub class. This classis a stub to the server and relays function calls between
the TACTIC server and the client API code. It handles all the details of how to connect to the server. It also maintains
status information, including the current project and whether or not the session is authenticated.

All client API scripts should run within a transaction. This requirement is achieved using server.start("Ping Test"),
which initiates anew transaction on the server. All subsequent server interactions are grouped in the same transaction
until server.finish() is executed. The function server.abort() is used to abort the transaction should any error occur
in the body of the code.

Querying data

The most fundamental operation in the Client APl is the query function, which enables access to direct information
on an SObject

The following example illustrates the use of the query function:

define the search type we are searching for

17

TACTIC Developer

search_type = "prod/asset"

define a filter
filters =[]
filters.append(("asset_library", "set"))

do the query
assets = ny.server.query(search_type, filters)

print “found [%l] assets" % en(assets)

go through the asset and print the code
for asset in assets:

code = asset.get("code")

print (code)

Executing this example will give the following output:

$ pyt hon exanpl es/ query. py
found [3] assets

chr001

chr 002

chr 003

In thisexample, asearch_typeisfirst defined. This search typeisauniquely named identifier for aclass of SObjects.

A list of filtersis next defined. These filters allow you to narrow the search to specific SObjects. In this example,
only assets of the asset_library = "set" will be found.

Next, the assets are retrieved using the query() function, which returns a list where each element is a serialized
dictionary of an SObject. In this example, the code for each asset is retrieved and printed.

Filters are very important in the query function because they narrow down searches to find the specific SObjects you
are looking for. Thefilters are very flexible and support awide range of different modes. A sample of the supported
modes is shown below:

sinple search filter

filters =[]

filters.append(("nane_first", "Joe"))

results = ny.server.query(search_type, filters, colums)

search with "and': where nanme_first = 'Joe' and nane_| ast = ' Snoe'
filters =[]

filters.append(("nane_first", "Joe"))

filters.append(("nane_last", "Snmoe"))

results = ny.server.query(search_type, filters, columms)

search with "or': where code in ('joe', ' mary')

filters =[]

filters.append(("code", ("jo e", "mary")))

results = ny.server.query(search_type, filters, columms)

search with "or': where code in ('joe',"'mary') order by code
filters =[]

filters.append(("code", ("joe", "mary")))

order_bys = ['nane_first']

results = ny.server.query(search_type, filters, columms, order_bys)

search with i ke: where code like '"j%
filters =[]
filters.append(("code", "like", "j%))

18

TACTIC Developer

results = ny.server.query(search_type, filters, columms)

search with regul ar expression: code ~ 'ma

filters =[]

filters.append(("code", "~", "ma"))

results = ny.server.query(search_type, filters, columms)

search with regul ar expression: code !~ 'm
filters =[]
filters.append(("code", "!~", "ma"))

Insert and Update
It is essential to insert SObjects and update their values.

The following code creates a new asset in the database.

define a search type for which to add a new entry
search_type = 'prod/ asset

build a data structure which is used as data for the new sobject
data = {

‘code': 'chr001

‘name' : ' Bob'

‘description': 'The Bob Character’

}

server.insert(search_type, data)

The following code snippet updates an existing asset in the database:

define the search key we are searching for
search_type = "prod/asset"

code = 'vehicl e001'

search_key = server. buil d_search_key(search_type, code)

build a dataset of updated data
data = {
‘description': 'This is a new description'

}
do the update

asset = ny.server.update(search_key, data)

print asset.get("description")

Note that the search key is used to identify the precise sObject being updated. This search key uniquely identifies an
sObject in TACTIC. With this search key, TACTIC is able to precisely update the specified sObject.

Javascript Client API

The TACTIC Client API can be accessed in Javascript as well as Python. One can deduce its usage from the Python
Client API doc. One main point to notice is that the keyparams in the Client API doc, also known as keyword
argumnets, should be expressed asahash {} in javascript. Here are some examples:

1. Using the eval () function, we want to find all the anim snapshots checked in with the asset chr001.

var server = TacticServer Stub. get();

var exp = " @OBJECT(st hpw snapshot['context', anim])";

var result = server.eval (exp, {search_keys:[' prod/ asset ?pr oj ect =sanpl e3d&code=chr001']});
log.critical (result);

2. Display the notes written for the selected assets in the UI.

19

TACTIC Developer

var server = TacticServer Stub. get()

var search_keys = spt.tabl e.get_sel ected_search_keys();

var exp = " @OBJECT(st hpw note)";

if (search_keys.length > 0){
var result = server.eval (exp, {search_keys: search_keys});
log.critical (result);

}

3. Display only the task code in anim or Igt process with description containing the word fire, not specific to any
particular asset.

var server = TacticServer Stub. get();

var exp = "@ET(sthpw task['process', 'in', "animlgt'][' description','EQ,'fire'].code)";
var result = server.eval (exp);

log.critical (result);

4. Toinsert anote for an asset chr001 under the model process and context.

var server = TacticServer Stub. get();

var sk = server.buil d_search_key(' prod/asset','chr001');

server.insert('sthpw note', {'note': 'A test note', process: 'nodel', context: 'nodel', |ogin:
‘admin'},

{parent _key: sk});

5. To get the latest snapshot of the asset chrO01 for the current project

var server = TacticServer Stub. get();

var sk = server.buil d_search_key(' prod/asset','chr001');

var snapshot = server.get_snapshot(sk, {context:'anim, include_paths_dict: true, versionless:
fal se});

log.critical (snapshot);

6. To run aquery of snapshots using filters and limit keyword argumnets

var server = TacticServer Stub. get();

var filters = [];

/1 use built-in expression operator EQ NEQ EQ, or NEQ to specify the search_type has to
contai n prod/shot

filters.push(['search_type', 'EQ,6'prod/shot']);

filters.push(['project_code', ' sanple3d']);

var snapshot = server.query_snapshots({filters: filters, limt: 5});

log.critical (snapshot);

20

TACTIC Developer

Checkin / Checkout Operations
Checking files in

The Client API has access to the full range of TACTIC's asset management system.

Any sObject can become a "container" for check-ins. This has the advantage that you can use this one SObject
(container) to check infilesusing the deep set of check-intoolsprovided by TACTIC. Therest of thissection describes
the different types of check-ins available.

Simple Checkin

The simple_checkin() function allows you to check in asinglefile.
file_path = "./test/m so_ranen.jpg"

now check in the file

search_type = "unittest/person"
code = "joe"
context = "test_checkin"

search_key = mny. server. buil d_search_key(search_type, code)

sinple check-in of a file. No dependencies

desc = 'A Sinpl e Checkin'

snapshot = my. server. sinpl e_checki n(search_key, context, file_path, description=desc

nmode="upl oad")
print snapshot. get (' snapshot"')

The simple_checkin isthe most basic type of check-in. It creates a snapshot and then checks afile into that snapshot.
The newly created snapshot is returned.

<snapshot >
<file name="m so_ranmen_v001.j pg" type='main' code='123BAR />
</ snapshot >

The exact file name that is checked in will vary depending on the specific implemented naming conventions

Group (or Sequence) Checkin

The group_checkin() function allows you to check in a sequence of files, defined by a frame range:

<start >- <end>/ <by>

For example, aframe range of 1 to 10 is descibed as "1-10". Or every second frame from frame 20 to frame 50 can
be described as "20-50/2".

TACTIC providestwo notations to describe the file names of arange of frames. This special notation, in conjunction
with the frame range, can generate a sequence of files. The two notations are as follows:

o <base>.#HHH.<ext>
¢ <base>.%0.4d.<ext>

Hereis acode example of checking in a sequence of files:

pattern = "./test/m so_ranen. %9. 4d. tif"
file_range = '1-24'
context = 'beauty '

build the search key
search_type = "unittest/person"

21

TACTIC Developer

code = "joe"
search_key = my. server.buil d_search_key(search_type, code)

sinmple checkin of a file

desc = 'A Checkin of a group of files'

context = "test_checkin"

snapshot = server.group_checki n(search_key, context, file_pattern, file_range)
print snapshot. get (' snapshot"')

When executed, this example will check in a sequence of 24 files starting from 1 to 24. It should be noted that this
method will by default expect that the files have been uploaded to the server. For thisreason, it is often recommended
to use preallocated check-ins for both sequence and directory check-ins.

Directory Checkin

As the name suggests, a directory check-in enables an entire directory and all of its subdirectories to be checked
in. TACTIC does not keep track of the contents of the checked-in directory. This allows you to check in complex
directory structures without having to inform TACTIC of all of the details of the contents. This might be the best
approach when al the details of the directory are aready handled by some other system so it is not necessary for
TACTIC to track things.

Here is a code example of checking in a directory:
file_path = "./test/ X302/ beauty"

build the search key

search_type = "unittest/person"

code = "joe"

search_key = mny. server. buil d_search_key(search_type, code)
context = "test_checkin"

sinmple check-in of a file.

desc = 'A Sinpl e Checkin'

snapshot = my.server.directory_checkin(search_key, context, file_path, description=desc)
print snapshot. get (' snapshot"')

Note that this code is very similar to single file check-ins (smple_checkin()), because TACTIC treats a directory
check-in in asimilar manner to a file check-in. It uses the leaf directory as the file name. It is important to consider
naming conventions, because this leaf directory will be handled using file naming conventions even though it isa
directory.

Aswith group_checkin(), this method already expectsthefilesto have been uploaded to the server in the appropriate
place. There are various modes that can be used to alter the manner in which the files get to the server repository.
For details, see the "modes" section below.

Piecewise check-ins

TACTIC alows you to build up a check-in piecewise or stages. Thisis a powerful feature because you can build a
check-in over the course of many operations (and many transactions if desired) and the whole set of operations will
be treated as a single versioned entity. The TACTIC snapshot definition alows for the entry of multiple filesinto a
single check-in. Typically, the process begins by creating a new "empty" snapshot. This snapshot is a placeholder
which reserves a version and context for a particular set of future operations. Once this empty snapshot is created,
you can start adding files and dependenciesto it.

The following example checksin a Mayafile and a corresponding OBJfile.

maya_path = "./test/chr001/chr001_nodel . m"
obj _path = "./test/chr001/ chr001_node. obj "

build the search key

22

TACTIC Developer

search_type = "unittest/person"
code = "joe"
context = "test_checkin"

search_key = my. server.buil d_search_key(search_type, code)

create an enpty snapshot

desc = ' A Pi ecewi se Checkin'
snapshot = my.server.create_snapshot (search_key, context, description=desc)
print "enpty"

print snapshot. get (' snapshot"')

snapshot _code = snapshot. get (' code')

snapshot = my.server.add_fil e(snapshot_code, maya_path, file_type=' naya')
shapshot nmy. server.add_fil e(snapshot_code, obj _path, file_type='obj")
print

print “"two files"

print snapshot. get (' snapshot"')

Executing this code will result in the following:

enpty
<snapshot />

two files
<snapshot >
<file nane='chr001_nodel _v00l. ma' file_code='" 1044BAR type='naya'/>
<file nane='chr001_nodel _v001l.o0bj"' file_code='1045BAR type='o0bj'/>
</ snapshot >

First, an empty snapshot is created using create_snapshot(), then files are added to this snapshot one by one. Note
that the type here is explicitly specified. This type differentiates one file in a snapshot from another.

It isalso possible to add a sequence of files or even adirectory to a snapshot:

pattern = "./test/m so_ranen. %9. 4d. tif"

file_range = '1-24

snapshot = server.add_group(snapshot _code, file_pattern, file_range, file_type=' sequence')
print snapshot. get (' snapshot')

directory = "./test/test_directory”

snapshot = server. add_directory(snapshot_code, directory, file_type="directory')
print snapshot. get (' code')

Executing the last code snippet will give the following results:
<snapshot >
<file name="m se_ranmen. %90.4d.tif" file_code='1047BAR type='sequence'/>
</ snapshot >
<snapshot >
<file name="m se_ranmen. %9.4d.tif" file_code='1047BAR type='sequence'/>

<file nane="test _directory" file_code='"1047BAR type='directory'/>
</ snapshot >

Checkin Modes

There are various modes that you can use to check in files. These modes determine how a file will be transferred
to the repository.

« upload: Uploads the filesto atemporary directory
« copy: Copiesthefiles to the handoff directory

* move: Movesthe files to the handoff directory.

23

TACTIC Developer

The previous simple_checkin() example usesthe "upload" mode. This meansthat the client will connect to the server
and use an HTTP connection to upload the file to the server where it will be subsequently checked in. HTTP does
not require any additional setup and it may be the only choice available for facilities having only WAN access to
the TACTIC server. However, HTTP is a very slow transport protocol so, if possible, it is better and faster to use
other available modes.

The copy and move modes use a"handoff" directory, which isan intermediate directory that is visible on the network
to both the client machine and the TACTIC server. When the check-in is executed, the files are first copied or
moved to this handoff directory. The TACTIC server is then notified and grabs the files and puts them into the
repository, renaming as the naming conventions stipulate. The files are aways "moved” from the handoff directory
to the repository. The advantage of using these modes over the "upload” mode is that they go through NFS or CIFS.
These modes make use of the fast networks and huge file servers that are available in typical media and production
facilities.

The copy and modes require abit of setup because the server and the client must be able to see the handoff directory.
Y ou need to configurethe TACTIC server configuration file, located in <site_dir>/config/tactic_<os>-conf.xml. This
file contains the following relevant settings:

e win32_client_handoff_dir: the handoff directory as seen from a Windows client

« linux_client_handoff_dir: the handoff directory as seen from aLinux client

e win32_server_handoff_dir: the handoff directory as seen from a Windows TACTIC server
* linux_server_handoff_dir: the handoff directory as seen from a Linux server

Note that the win32 settings apply to al flavors of Windows, including Windows 64-hbit machines. The Linux settings
apply to al POSIX machines including Debian base operating systems and Mac OS X.

After you set the configuration, you can then use the copy or move modes to take advantage of the handoff directory:

sinmple check-in of a file using nove node

desc = 'A Sinpl e Checkin'

shapshot = my. server. sinpl e_checki n(search_key, context, file_path, description=desc,
nmode="nove")

print snapshot. get (' snapshot"')

Note that the only difference in this example from earlier check-in examples is that the mode parameter is set to
"move".

Preallocated check-in (mode="preallocate")

Preallocated check-ins are the most efficient check-ins. Bandwidth and storage space are expensive commoditiesin
atypical media or production facility, so there is a definite cost and time benefit to reducing their use as much as
possible.

Preallocated check-ins enable a client process to be checked directly into the repository. They are recommended for
check-insthat are very heavy in either bandwidth or disk usage and are designed to minimize both. Some production
processes that would benefit from using this check-in mode include rendering frames, ingesting plates, simulating
data, and so on.

The following steps describe the process for preallocating check-ins:
1. Create an empty snapshot to reserve a check-in version and context.
2. Ask for apath in the repository from the TACTIC server.

3. Create thefilesdirectly in the path given by the TACTIC server.

24

TACTIC Developer

4. Inform TACTIC that the files have been placed in the appropriate location.

The path supplied by TACTIC in the preallocation is located directly in the repository. The process generating the
files can thus save the files directly to the correct location in the repository (following all the predefined naming
conventions). Files are created directly in the repository with the correct directory and file name as TACTIC would
have checked them in using the other methods. This eliminates|ater having to copy or move files around the network
unnecessarily, asistypically required by other check-in modes.

Because the simple_checkin(), group_checkin() and directory _checkin() functions perform the entire check-in
process in one step, you cannot use them for preall ocated check-ins. Instead, you would use a piecewise check-in to
build up the checked in parts. The following is an example of a preallocated check-in using a piecewise approach:

search_type = "prod/render"
code = "XQ®02_beauty"
search_key = my. server. buil d_search_key(search_type, code)

create an enpty snapshot

desc = 'A Preal | ocat ed Checkin'

context = "render"

snapshot = my.server.create_snapshot (search_key, context, description=desc)

get the preallocated path

snapshot _code = snapshot. get (' code')

file_pattern = snapshot. get _preal | ocat ed_pat h(snapshot _code, file_type="namin")
print “file_pattern: ", file_path

generate the files

for i in range(l, 20):
file_path = file_pattern %i
render _file(file_path)

add the files to the snapshot

snapshot = server.add_group(snapshot _code, file_type="nmin", file_range="1-20"
nmode="preal | ocat e")

print snapshot. get ("snapshot")

Executing the above code would result in output something like:

file_pattern: X@002_beauty v012.9%9.4d.tif
<snapshot >

<file nanme="X®02_beauty v012.9%0.4d.tif" file_code="123BAR' type="main"/>
</ snapshot >

The file pattern returned is completely dependent on naming conventions. In this case, the search_type would have
had to define a naming convention whereby the context of "render" produces the above file pattern. For example,
the file naming convention code could include:

def prod_render(ny):
render = my. sobj ect
ext = nmy.get_file_ext()

parts = []
parts. append(render.get_val ue('code'))
parts. append("v%.3d" % ny.snapshot.get_val ue("version"))

file_nane = "_".join(parts) + ".9%).4d" + ext
return file_nane

(See the naming convention documentation for more information on how to set up naming conventions.)

It should be noted that the function get_preallocated path() returns a full path, including the filename as specified
by the naming conventions. Ideally, TACTIC must be able to generate the correct path that can be used to save the
files (asin the example above).

25

TACTIC Developer

Thereis enormous advantage to using preall ocated check-ins. Files are created directly to the repository, eliminating
all of the unnecessary copying of files around the servers. When groups of files reach the muti-gigabyte or even
terabyte range, it becomes prohibitively expensive to check in filesin the traditional manner. Preallocated check-ins
maximize the use of your internal system architecture.

In-Place Checkins

In general, the in-place check-in should be considered as the last resort. In-place check-ins do not make use of the
TACTIC naming conventions, and may be the only option when you are confronted by alegacy directory structure.
Using this check-in method makes the assumption that you will be ableto later definelogic that will map to adesired
naming convention. As a guideline, naming conventions should be procedural and as simple as possible, so you must
plan carefully before considering in-place check-ins.

26

TACTIC Developer

Snapshot Dependency

Types of dependencies

Snapshots control versioning in TACTIC. When processing a checkin, TACTIC creates a snapshot that contains
an XML description of what was checked in. Snapshots can also be dependent on any number of other snapshots
(through a"ref" tag). Taking advantage of this dependency relationship, you can create complex dependency trees
for complex scenes, with the option of undoing them if required.

There are two types of dependencies:
« hierarchical: The given snapshot contains the referenced snapshot

« input: The given snapshot used or was created from a referenced snapshot (but does not contain the contents of
that snapshot)

Connecting snapshots

Dependencies are connected using the add_dependency_by code() method, which takes an existing snapshot and
adds the appropriate reference tag to it.

The following example shows how to connect two snapshots:

search_type = "prod/asset"
code = "chr001"
search_key = server. buil d_search_key(search_type, code)

checkin a node
nodel _snapshot = server.sinpl e_checki n(search_key, nodel _path, context="nodel")
nodel _snapshot _code = nobdel _snapshot . get (' code')

checkin arig
ri g_snapshot = server.sinple_checkin(search_key, rig_path, context="rig")
ri g_snapshot_code = rig_snapshot. get (' code')

add the nodel dependency to the rig
snapshot = server.add_dependency_by_code(rig_snapshot_code, nodel _snapshot_code)
print snapshot. get (' snapshot')

Executing the above example would output:

<snapshot >

<file name="chr001 rig v00l. ma" file_code="123BAR' type='"main'/>

<ref context='"nodel' version='3" search_type='prod/asset ?proj ect =sanpl e3d' search_id="4"/>
</ snapshot >

The ref tag is the reference to another checkin. In this case, the reference can be interpreted as being contained in
the snapshot (that is, thisis ahierarchical dependency).

Sometimes, it is not possible to store or retrieve version information for an SObject within a session if a particular
application provides only thefilename. It is generally assumed that afilenameis unique for each search _typein each
project (thisis not strictly enforced, but should be as best practice), so it is possible to reverse-map afilename to a
snapshot. In this case, you can try to add a dependency using the add_dependency() method:

file_path = extract_dependent _path()
snapshot = server.add_dependency(snapshot_code, file_path)

This method will attempt to link the filename with the appropriate snapshot.

27

TACTIC Developer

Input references

As opposed to the previous example of hierarchical references, there is a second type of dependency called an input
reference. Input references are dependencies where a particular snapshot was used to produce another snapshot, but
the resulting snapshot does not contain the contents of the originating snapshot. Asan example, a Photoshop file may
be used to generate a texture map, but the texture map does not need to contain the Photoshop file.

Adding an input referenceis simply a matter of setting the "type" argument to "input_ref":

source_path = "./test/texture. psd"
image_path = "./test/texture.tif"

check in the photoshop file

sour ce_snapshot = server. sinpl e_checki n(search_key, context="source", file_path=source_path)
sour ce_snapshot _code = source_snapshot. get (' code')

source_repo_path = server.get_path_from snapshot (source_snapshot _code)

checkin the inage
i mage_snapshot = server.si npl e_checki n(search_key, context="image", file_path=i mage_path)

add an i nput dependency

i mage_snapshot _code = i mage_snapshot . get (' code')

i mage_snapshot = server.add_dependency(i mage_snapshot_code, source_repo_path, type="input_ref")
print snapshot. get (' snapshot')

The above code would produce output like the following:

<snapshot >

<file name="texture_image _v001.tif" file_code="123BAR"' type='main'/>

<ref context="source' version='3" search_type='prod/asset ?proj ect =sanpl e3d' search_id='4
type="input _ref"/>
</ snapshot >

By managing dependencies at the time of each checkin, it ispossible to build up adependency tree. Thus each version
of every checkin hasits own independent dependency tree.

28

TACTIC Developer

Changes
Search ID to Search Code

A changemadein TACTIC 4.0 isthe use of search code instead of search id when relating sObjectsto their snapshots
(or checkins). Until 4.0, the search id was being used to maintain this relation. Now, if you look at the code column
of a sObject and the search code column of a snapshot checked in to this sObject, you will find that both have the
same value. Thistells TACTIC that the snapshot is associated with this sObject.

test ik
Preview Name Description Motes Code
] tastl YOBTESTO0002
Snapshot 4
Preview Locked Files Context Ver# Rev@ Login Ti Descripti Current Latest Search Code
J 3 publish vo01 0 admin Apr30,2013-1%:07 No description

v « YOBTEST00002

The reason for this change was merging issues between multiple tables of snapshots. When using search id to merge
between tables, there were many discrepancies which could not have been easily solved. Using search code to merge
tablesisamuch easier process. There are also other reasons which are not very important.

29

TACTIC Developer

Custom Widgets

Widget Architecture
What are Widgets?

Widgets are drawable entities. They have the ability to draw themselves and aso have the ability to contain other
widgets and call on their drawing.

Widget Architecture?

The TACTIC interface is entirely built on top of widget architecture. A widget has a drawing mechanism which
displays the widget. Widgets can contain any number of other widgets and pass information to them.

Certain widgets al so make use of configuration xml documentsin order to configure how they should bedrawn. These
configs are useful because they allow very quick and readable configuration of complex widgets. This document can
also be stored in the database as away of remembering the state of how to redraw a particular widget. Thisiswidely
used in TACTIC to store various parts of the interface in the database.

Every widget has a display method which completely controls how a widget is displayed. This display is recursive
as each widget will call al of it's children's display method. In this manner, the entire interface is build up.

Widgets derive data to draw from sobjects. Generally a search is performed to retrieve sobjects which are then used
to draw the widget. The widget itself can perform the search or it can recieve sobjects from some external source.

Widget Config

Numerous widgets use configuration xml documents to help them draw their display. These widgets are considered
to be "layout" widgetsin that they generally use the configurations to determine what the child widgets are and how
and where they are drawn within the parent layout widget. The widget config is an xml document which describes
the child elements and how they should be display. The format is defined as follows.

<confi g>
<VI EW>
<el ement name=' NAME' OPTI ON=' VALUE' >
<di spl ay cl ass=' CLASS_PATH >
<KWARG>VAL UE</ KWARG>
<KWARG>VAL UE</ KWARG>
</ di spal y>
</ el ement >
<el ement name=' NAME' OPTI ON=' VALUE' >
<di spl ay cl ass=' CLASS_PATH >
<KWARG>VAL UE</ KWARG>
<KWARG>VAL UE</ KWARG>
</ di spal y>
</ el ement >
</ VI EW+
</ confi g>

Where capitalized words represent variable entries.

VIEW The name of a view which encompases a particular
configuration. There can be any number of views in a
configuration documentation

OPTION An option defining a state or setting of this element. This
information does not get passed to the element widget

30

TACTIC Developer

VALUE A value or a particular argument or options
CLASS PATH The fully qualified python path of the widget class
KWARG A kwarg that is passed to the class on construction

A simple example of a configuration is as follows:

<confi g>
<si npl e>
<el ement name='email"' >
<di spl ay cl ass=' cust om MyCust omg"' >
<title>My Wdget</title>
</ di spl ay>
</ el ement >
</ si mpl e>
</ config>

In this case, the "simple" view defines asingle element called "email”. This element

The configuration document can contain any number of "views'. Each "view" can contain any humber of elements.
Inside each element, there are xml snippets which represents an xml serialization of awidget. In the example above:

<di spl ay cl ass=' cust om MyCust om\\Mg' >
<title>My Wdget</title>

</ di spl ay>

tranglates into python server code as follows:

from custom i nport MyCust omg
wi dget = MyCustomMg(title=" My Wdget')

TACTIC usesthisformat extensively to serialize widgetsto the database. Although any source can be used, the config
is most often defined in the widget config table of a particular project.

There are a couple of layout classes that make heavy use of the widget config.
SideBarWdg:

Tablel ayoutWdg: thisclassisthe used to display most tabular datain TACTIC. It contains many features to make
the display of tabular data dynamic and flexible. Views can be customized and saved. It is probably the most used
layout classin TACTIC. It makes heavy use of thewidget config for itsdisplay. It'simportanceis sufficient to warrent
asection on its own below.

CustomL ayoutWdg: this class makes use of a special version of the config. It defines elements, but they are defined
within an html tag, allowing for precise layout of elementsusing HTML. Thisallowsfor very flexible layouts while
till being able make use of TACTIC widgets.

SideBarWdg

The SideBarWdg definesthe ook of the side bar on the | eft of the TACTIC interface. The SideBarWdg makes heavy
use of the widget config to determine the contents of the side bar. There are 3 main types of widgets that would be
defined as elementsin the SideBarWdg:

e LinkWdg
¢ FolderwWdg (Currently SectionWdg)
e SeparatorWdg

Thetop level view for the project views can be found in the widget config table with the criteria

31

TACTIC Developer

e search type ='SideBarWdg'
e view ='project_view'

Thiswill defined alist of elements that appear in the top level of the "Project View". An example would look like
the following:

<confi g>
<proj ect _vi ew>
<el ement name=' sunmary'/>
<el ement nanme=' nodel i ng' />
</ proj ect _vi ew>
</ confi g>

Although, you could defined the display section here, there are are hierarchical definitions to the elements. If a
definition is not found inline, TACTIC will look at the the database for the specially named "definition" view.

e search _type ='SideBarWdg'
e view = 'definition’

<confi g>
<defini ti on>
<el ement name='summary' title='"Asset Sumary' >
<di spl ay cl ass='Li nkWig' >
<cl ass_nane>t acti c. ui . panel . Vi ewPanel Wig</ cl ass_name>
<sear ch_t ype>prod/ asset </ sear ch_t ype>
<vi ew>summar y</ vi ew>
</ di spl ay>
</ el ement >
<el ement name='nodeling' title="Mdelling >
<di spl ay cl ass=' Fol der Wig' >
<vi ew>nodel i ng</ vi ew>
</ di spl ay>
</ el ement >
</ definition>
</config>

Both the summary and modeling elements are defined in this special "definition” view"

Sinceall of thefoldersat all levels cascade to look at the "definition" view, it is useful to aways define defintions of
elementsin the "definiton” view. Thiswill allow a consistent definition for all of the "views" in the project view.

The "summary" view is defined as a LinkWdg. This widget takes the information defined in the options and then
displaysthat classin the main body of the TACTIC interface.

wi dget = Vi ewPanel WIg(search_type='prod/asset', view= summary')
As stated edlier, the ViewPanel Wdg, combines a SearchwWdg with a TablelL ayoutWdg.

The second element defines a "modeling” folder. Whe afolder is click, it will open up and display another list that
is derived from the "modeling” view.

TableLayoutWdg

This widget is the primary class used in TACTIC to lay out tabular data. It makes heavy use of widget config to
define what to display.

To display the rows and columns of the tabular layout, this widget makes use of the following:

a) rows which are sobjects

32

TACTIC Developer

b) columns which are widgets derived from BaseT ableElementWdg.

The table layout widget is able to perform a search base on input criteria. It is also able to receive sobjects through
its set_objects() method.

Thiswidget iterates through each of the sobjects per row.

For each column, the table draws the list of widgets provided by the config. This config is typically defined inin
the database in the widget config table.

Two parameters are typcially used to find a particular widget config.
a) Search Type
b) View

BaseTableElementWdg

BaseT ableElementWdg are extensively used in the Ul. Each column in atable you seein TACTIC derives from it.
For examples of how to create your own, please refer to the Widget Devel opment section.

33

TACTIC Developer

Custom Layout Editor

Custom Layout Editor +

Views > B
T HTML
2= asset_panel_wdg
a= purndown_chart_wdg HTML: @)

2= burndown_report_wdg

2= delivery_planner_wdg

2= efficiency_chart_wdg

a- file_usage_report_wdg :-
2= my_dashboard_tasks_wdg i
2= my_dashboard_user_info_wdg
a= my_dashboard_wdg

2= my_dashboard_work_hours_wdg
2= project_dashboard_stats_wdg

= project_dashboard_wdg .
2= project_tasks_dashboard -
== report_dashboard_expenses_wdg 10

report_dashboard_project_stats_wdg
2= report_dashboard_resources_wdg
2= report_dashboard_wdg -
3= review_mobi_wdg ‘
== task_status_chart_wdg
2= test view

@

el View: | teat_view
</table>
</td>
<td>
<div style="Iflcat: right">
<element name="common.jck_tasks">
<display class="tactic.ui.panel.Cust
<viewrcommon.job_tasks<, W
<gearch_key>#{Jjcb_key]l</sear
</display>
</element>
</dive
</td>
</tr>
</table>

<tablex
<tr>
<td class="spt_header">Edit Hotes:</td>»
<td>
<element name="Comments">
<display class="pyasm.widget.Textireal
<gearch_key>${Jjocb_kev]}</search key>
<cols»E0</cola>
</display>
</element>
</td>
</nry

TACTIC Script Edit

What the Custom Layout Editor Provides

The Custom Layout Editor allows you to have complete control over the look and feel of TACTIC using many
of the standard web technologies (HTML, CSS and Javascript). With this tool, you can build your own TACTIC
components (called widgets) that have the ability to interact with one another intelligently, making it easier for you
to design your very own TACTIC interface.

HTML

Custom Layouts enable the laying out of custom widgets using standard HTML.

Element Tag

TACTIC Custom Layout introduces a new html tag <element> which alows for TACTIC widgets to be embedded
into HTML.

There are two formats for a TACTIC element: ashort form and along form:
short form:
<el emrent view='forms/nmy_form />

long form:

<el ement >

<di spl ay cl ass='tactic. ui.panel.CustonlayoutWg' >

TACTIC Developer

<vi ew>f or ns/ my_f or nx/ vi ew>
</ di spl ay>
</ el ement >

Thisability to reference other views and elements makesit easy to keep atop level view that draws from other views.

For display class names of other widgets, see section on Common Widgets.

Styles

Y ou can create stylesfor each view in the Stylestab. However, most of thetimeit will be useful to reference acentral
stylesheet for a number of views.

In order to include atop level stylesheet, you can create an empty view with only styles defined and include these
stylesinto other top level views, just as how you would reference a normal view.

For example, you can create aview called ‘common/styles’ and add thisline to the HTML of aview where you want
the styles to appear.

<el ement vi ew=' common/ styl es' />

Behaviors

TACTIC's behavior system makes use of standard JavaScript behaviors with the added functionality of some built-
in classes.

Here are two ways to add an alert behavior to a button class called 'my_button'.

<behavi or cl ass="ny_button” event='click_up'>
alert('Hello World")
</ behavi or >

<behavi or cl ass='ny_button' >{
"type': 'click_up'
' chj s_action'

alert('Hello World")

} </ behavi or >
Here are the types of events that the TACTIC behavior system has built-in support for:

click_up | click | wheel | double click | drag | hover | nove | change | blur | nopuseover
nouseout | keyup | keydown | |isten

Y ou can set the behavior class to activate upon the firing of another event using the 'listen’ type event.

<behavi or cl ass='my_button' >{

‘type': ‘'click_up', 'cbjs_action’

spt. named_events.fire_event (' ny_event _trigger');
} </ behavi or >

<behavi or cl ass='ny_cl ass' >{
‘type': 'listen’

‘event _nane': 'ny_event_trigger'
' cbj s_action'

alert('Hello World');

35

TACTIC Developer

} </ behavi or >

When the behavior is applicable to a specific HTML element (eg. click, click_up, mouseover, etc.), you can get
element for which the behavior originated from using the 'bvr.src_el' (Behavior Source Element) tag.

var table = bvr.src_el.getParent('.ny_table');
var cells = table.getEl ements('.nmy_cells');
cells.setStyl e(' background', 'red');

TACTIC' s powerful framework comes with many API functions that make developing for TACTIC easier. Here are
SOme Common Ones.

Show loading popup:

spt. app_busy. show(' Saving data...")

Hide loading popup:

spt . app_busy. hi de()

Load an element:

spt . panel . | oad(el ement _nane, cl ass_nane, kwargs)

Load an element into a popup:

spt . panel . | oad_popup(el ement _nanme, cl ass_nane, kwargs)
Close a popup:

spt . popup. cl ose(popup_el enent)

Images

Images can be checked into TACTIC and used in interface design. In the Files tab, you can check in images using
the Check-in wizard.

Preview Files \Web Path File Size

lassetsftimsiwidget_config/WIDGET_CONFIG05545/publishilogo_publish.jpg 48 KB

Oncethefileis checked in, you use the web path as the URL of the image.

Mako

The custom layout engine embeds the M ako, a powerful templating engine which allows you to embed Python scripts
and logic within HTML. Hereis asimple example for its usage.

<di v>

<%

my_car = 'A ferrari
%

</ di v>
<p>${ny_car} </ p>

Test Custom Layout =]

4 ferrari

36

TACTIC Developer

Mako makes passing and accessing of data in TACTIC easy, especially combined with the support of XML by
TACTIC widgets for passing arguments.

The 'kwargs.get' function can be used to get the value of an XML attribute of an element, whether it is an attribute
already supported by the element or an arbitrary one. Here is an example of setting avalue for an arbitrary attribute.

HTML codein top level view:

<el ement >
<di spl ay cl ass='tactic.ui.panel.Custonlayout Wg"' >
<vi ew>ny_f or ms. phot oshoot _f or nx/ vi ew>
<ar gs>Hel | o</ ar gs>
</ di spl ay>
</ el ement >

HTML codein aview named 'my_forms.photoshoot_form':

<el ement >
<di spl ay class="tactic.ui.input.Textl|nputWg' >
<def aul t >${ kwar gs. get ("args")} </ def aul t >
</ di spl ay>
</ el ement >

For the example above, the text field will be populated with the string 'Hello'.

Most of the time, it will be beneficial to use Mako to pass search keys from one view to another. That's covered in
abit more detail in the Creating Forms section of this document.

Injecting Widgets

Y ou can inject your custom widgets or TACTIC built-in widgets into your view through the user interface. Y ou can
do it through the gear menu:

L [View: | N

Add Login Template
Add Raw Menu Template
Add Menu Template

Inject Widget

Inject Text Input

Inject Look Ahead Text Input
Inject Table

Inject Calendar

Add to Side Bar
Set as Project Url
Add as Custom Url
Show Custom URLs

Repeat Last Test

All these injection options allow you to inject the widget you want directly where your cursor is in the code. All
these injections have the name field in common. The name field allows you to name your widget in case you want
to refer to it later in the code.

Selecting I nject Widget alowsyoutoinject any widget you want. Y ou need to define which widget to inject, you
can select your widget through the dropdown or select classpath and write the class path of abuilt-in TACTIC widget.
After selecting, a built-in widget, you may have to fill in additional arguments which are required to successfully
run the widget.

Selecting Inject Text Input allows you to inject the text input field widget. Y ou can specify many options like the
width of the input field. The Inject Look Ahead Text Input is similar except there is alook ahead which comes
with the input field.

37

TACTIC Developer

Similarly, you can inject atable or a calendar where you are given other options to customize them respectively.

Adding View to sidebar

= B) 55 = View: | adobe/illustrator/main
J HTML Add Login Template Bs Beha
| AddRaw Menu Template
HTML: &) Add Menu Template
inect Widget
1 |<div clas Inject Text Input Eor™>
2 <div =1 Inject Look Ahead Text Input p0:™ class="frame_ container">

<div| Inject Table
<in
</diy

Inject Calendar

<inr_:_illustratc:_buttc:n" wvalue="Launch"/>
</ divy - =
<div sq SetasProjectUrl ;" class="frame_container">
<div| Addas Custom Url L20px">
<tg Show Custom URLs Eicn" rows="3" cols="30">Enter a Description</te:
</diy
_1 <di';' Repeat Last Test E"float:right; width:150px™>

Context

You can add the view you have created directly to the sidebar. To do this, click on the gear in the top menu and
select “Add to Side Bar”. Thiswill add thisview to the sidebar under the Project Views. By default, It will get named
according to the view name and “/” will be treated as a space. For example, “app/chart” will be named “App Chart”.
Y ou can always rename these views in the sidebar by right clicking on them and selecting “Edit Side Bar”. Now
select the view you want to edit and change the Title field.

Creating URLs

When you startup tactic and go to the main project URL (.../tactic/<project_name>), you are presented with thetactic
homepage of the project. That tactic homepage URL can be changed to show one of your created views. To do this,
open up your view in the custom layout editor, then from the gear menu select “ Set as Project Url”. The current view
you have open will be shown when you go the main project URL. You can come back to admin side of tactic by
adding “/admin” to the URL (.../tactic/<project_name>/admin).

You can also turn your view into a custom URL. This means that your view will open when you go to a specific
URL. To do this, open your view in the custom layout editor, then from the gear menu select “ Add as Custom Url”.
Thiswill open up adiaog box where you can specify what URL should open up the view. The URL specified there
is showing the URL which is appended to (.../tactic). Y ou can specify which widget to run in the URL in the widget
field. By default, it shows the widget code for the view that was open in the custom layout editor. Y ou can check all
your custom URL s by going to the gear menu and selecting “ Show Custom URLS". This will show all the existing
custom URLSs. Thisiswhere you can delete existing custom URLSs.

Creating Forms

Forms provide an interface for updating TACTIC data. The Custom Layout Editor makes the creation of forms easy
with built-in widgets and functions.

TACTIC aready has some predefined input widgets that can be used asinput fieldsfor forms, and they are referenced
like any other widget.

TextlnputWdg
SelectWdg

TextAreaWdg

38

TACTIC Developer

CalendarlnputWdg

ActionButtonWdg

<el ement name='ny_text_input_field >
<di spl ay class="tactic.ui.input.Textl|nputWg' >
<def aul t >Hel | o</ def aul t >
<wi dt h>100px</w dt h>
</ di spl ay>
</ el ement >

Y ou can find more details on the exact XML attributes that are supported by each widget in the Common Widgets
section.

Here are some useful functions for generating forms.
spt.api.get _input_val ues(di v_cont ai ner)

This gets the values of the all the input fields of adiv as an array with the attributes being the names of the element
names.

server. updat e(sear ch_key, data)

This updates an sobject with data that is passed in as an array.

The search key is akey that uniquely identifies an sobject.

Here is an example of usage of both for updating a TACTIC task through aform.

In this example, the search key of an sobject is passed into the view through alist of keyword arguments, and it is
kept as a hidden input for ease of access. The clicking of the save button activates the behavior for saving the form.

HTM.: <div class='spt_form >
<i nput type="hi dden" name="spt_search_key" val ue="${kwargs. get (' search_key')}"/>
<el ement name='spt_status' >
<di spl ay cl ass=' Sel ect Wig' >
<val ues>Assi gned| Pendi ng| Appr oved| Wi ti ng</ val ues>
<sear ch_key>${ kwar gs. get ("search_key")} </ sear ch_key>
</ di spl ay>
</ el ement >

<i nput type="button" class="spt_save_button" val ue="Save >>"/>
</ di v>

JavaScri pt:

<behavi or cl ass="spt_save_button> {

“"type": "click",

"cbjs_action":
//gets the parent of the behavior source el ement
var top = bvr.src_el.getParent('.spt_form);

/lgets all the input val ues
var val ues = spt. api.get_input_val ues(top);

var data = {
I/ gets val ue of el enent naned 'spt_status’
//sets it as the value of the 'status' colum for the task sobject
status: val ues. spt_st at us;

}

search_key = val ues. spt _search_key;
server. updat e(sear ch_key, data)

39

TACTIC Developer

}
Testing Interface

Y ou can customize your views to behave during a testing phase. To do this, you can add a condition in your code
to check whether the code is being run in testing mode. Y ou can use the following condition in the python section
of the code:

if kwargs.get("is_test") in [True, '"true']:

This condition will betrueif it istesting mode. Y ou can now use this condition to setup your variables correctly. You
can run the view in testing mode by clicking the test button in the top menu.

296 *’“D @ View: |adove/phovoshop/main Types [wiget [+

Tips and Techniques

Handling None:

The default value for the empty string in Python is the word "None". This does not help very much when you want
to obtain something like the search key of an sobject because if there is no search key, instead of getting an empty
string, you get the string "None". And if you try to pass "None" into an element, an error will likely result.

The way to work around that isto add an "or" at the end of your kwargs.get function.
i e: kwargs. get("search_key") or ""
Embed Elements:

A shortcut for embedding elementsinto the HTML is by clicking on the gear menu.

2 [=H @ @& View: | br
HTML Add Default Menu
HTML: @ Inject Widget

Inject Text Input

Lock Ahead Text Input
- Inject Table

- Inject Calendar

Add New Url

Repeat Last Test

Similarly, if you would like to inject another view into your current view, you can do so by right clicking on the
view you want to inject.

comman
2= created_info

a=| job_info

Test View
Inject View

a= job_tasks

a= jobs_in_reqy
2= request_info| Delete View

Element Name as Column of sObject:

If you pass a search key into an el ement, it automatically takes the element name as the column if you do not specify
one. In the example below, the text input will display the id of the sObject with the given search key.

40

TACTIC Developer

<el emrent name="id">
<di spl ay class="tactic.ui.input.Textl| nputWg">
<sear ch_key>${ sear ch_key} </ sear ch_key>
<wi dt h>100px</ wi dt h>
</ di spl ay>
</ el ement >

Custom Widget Basics

Introduction

Although any execution environment can interact with TACTIC by interfacing through the Client API, most often,
users will be interacting with TACTIC through the browser. TACTIC's main interface is the browser. All browsers
come with the Javascript language interpreter built-in and thus any rich interface that integrates with TACTIC will
need to interact with the various components using Javascript.

Three core frameworks in TACTIC work together to create a rich web interface.

e CustomLayoutWdg: provides the ability to create the visual interface by laying out widgets using HTML
templating

« Behaviors: provides aframework to create complex behaviors that is much easier to use than the browsers default
event system.

« Applet: provides the interaction to the client machine to do operations that the browser would otherwise not be
permitted to do

Accessing the server from Javascript

The TACTIC Client API can access server functionality through the TacticServerStub in the same manner as its
Python equivalent. Note the similarities in code structure in the following example:

Python code:

server = TacticServer Stub. get ()
snapshot = server. checki n(search_key, context, path, node="upl oad")
print snapshot. get ("code")

Javascript code:

var server = TacticServer Stub. get();
var snapshot = server.checki n(search_key, context, path, {node: "upload"});
al ert (snapshot . code)

There are a few differences due to the syntax of the two different languages. Keyword arguments are not natively
supported by Javascript. Since some of the functions in the server stub have numerous arguments, it is desirable to
only use those that are needed without having to "fill in" all of the preceding arguments with nulls.

For example, the previous Javascript code would have to read like the above:

41

TACTIC Developer

server. checki n(search_key, context, path, null, null, null, null, "upload")

In general, agiven function will have afew necessary arguments and al "optional" arguments are given in akwargs
dictionary. Another difference is that the sobjects returned are Javascript "objects' whose members are values from
the database. Attributes can be accessed in two ways:

1. code = snapshot['code]

2. code = snapshot.code
Testing Javascript
The most convenient method to test and implement the Javascript examplesisinthe TACTIC Script Editor. Thiscan

be convenient accesses by pressing the "9" hot key to bring it up. Alternatively, the TACTIC Script Editor can be
brought up under the gear menu under: Tools-> TACTIC Script Editor.

The CustomLayoutWdg:

Thisisasimple "Hello World" example.

<ht m >
<hl>Hel | o Worl d</h1>
</htm >

The XML document embeds an HTML tag that will be used to layout elements in the application.

Example 01: Hello World

The simplest way to view thisisto open up the TACTIC Script Editor and input the following code:

var html = "<htm ><hl>Hel | o Worl d</ hl1></htm .>";
var kwargs = {
"htm': htnl
Ix
spt. panel .| oad_popup(' Hel l o', 'tactic.ui.panel.CustonlLayoutWlg', kwargs);

/1 NOTE: this should be:
/] spt.api.l|oad_popup('Hello', 'tactic.ui.panel.CustonlLayoutWlg', kwargs);

This previous code is completely in Javascript, however, layout pages using strings in Javascript rapidly becomes
unwieldy. It isthus preferential to create these layouts using the widget config. Thisis done by going to the side bar
and going to Project Admin -> Widget Config. Thiswill open up the "widget_config" table. Thistable is used to
store al custom interface configurations for widgets.

Create anew entry by pressing the [+] button on the right side. Input the following into the config field and for view
input example01l.

42

TACTIC Developer

<config>
<exanpl e01>
<ht m >
<hl>Hel | o Worl d</h1>
</htm >
</ exanpl e01>
</ confi g>

Thisisthefull XML document describing the widget config. Note that the HTML is now embedded within that XML
document. Thiswill be important to know later when behaviors and elements are added to the widget.

Finally, in the TACTIC Script Editor, enter the following:

kwar gs = {
vi ew. ' exanpl e0l
b
spt . panel . | oad_popup(' Exanpl e01', ‘tactic.ui.panel.Custonliayout Wig', kwargs)

The following will appear when you click on "Run" in the TACTIC Script Editor the script above:

Hello = Ed

Hello World

asifi

Example 02: Adding to button with a behavior

Add anew entry to the widget_config table with view = 'example02' and with the following config definition.

<confi g>
<exanpl e02>
<htm >
This is a button:
<input type='button' class='"buttonl' value='Press M'/>
</htm >
<behavi or cl ass='buttonl' >{
"type": "click_up",
"cbjs_action": """’
alert('Hello World')

} </ behavi or >
</ exanpl e02>
</config>

In this example, an HTML button is added to the HTML layout. By default, a button doesn't do anything when it
is clicked. A behavior has to be added for something to happen. TACTIC behaviors are added to DOM elements
by their class attributes.

When the button is clicked (corresponding to the "click_up" event type), the Javascript in the "chjs_action™" attribute
is executed. This example will alert a"Hello World" message on clicking.

43

TACTIC Developer

Example 03 — Using form value

The following example will add a text area to the interface as well as extract information from that text area once
the button has been clicked.

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<I-- This exanpl es displays sone htm U and then reacts to it using the TACTIC
behavi or system -->

<confi g>

<exanpl e03>

<ht m >

<div cl ass='spt_top' >
<t ext area nanme='description' class='spt_input'></textarea>
<i nput type='button' class='spt_buttonl' value='Press M'/>

</ di v>

</htm >

<behavi or cl ass='spt_buttonl' >{
“type": "click_up",
"cbjs_action":
var top = bvr.src_el.getParent('.spt_top')
var values = spt.api.Uility.get_input_val ues(top)
var description = val ues. description
alert(' You entered: ' + description)

} </ behavi or >

</ exanpl e03>
</ confi g>

Note that currently, get_input_values() requires that every input element have class='spt_input' attribute. Future
versions may remove this requirement, but currently thisis necessary.

Pl ease note that when an APl for 2.6/2.7, the following lines will be changed

The followi ng |ine

var values = spt.api.Uility.get_input_val ues(top)
will be replace by:

var val ues = spt. api.get_i nput_val ues(top)

The followi ng |ine

var top = bvr.src_el.getParent('.spt_top')

will be replaced by:

var top = spt.api.get_parent(bvr.src_el, ".spt_top")

The behavior definition warrants a closer examination:

<behavi or cl ass='spt_buttonl' >{
“type": "click_up",
"cbjs_action":
var top = bvr.src_el.getParent('.spt_top')
var values = spt.api.Uility.get_input_val ues(top)
var description = val ues. description
alert(' You entered: ' + description)

} </ behavi or >

TACTIC Developer

First, there is an implied bvr object that exists in the namespace of the behavior. This bvr objects contains useful
data for the purposes of executing behaviors. The most important attributeis "bvr.src_el". This element is the source
element that called the event. Thiselement can be used as astarting point to navigate the DOM to search for elements.

var top = bvr.src_el.getParent('.spt_top');

It is common practice to find atop level element of awidget from the source element. Thistop element isa starting
point from which searches under a DOM hierarchy can be made. By starting from atop element, it is ensured that
the returned values are isolated to that single widget.

The next line gets all of the values of all of the input elements under the top element.

var values = spt.api.Uility.get_input_val ues(top)

Thisreturns a dictionary of name/value pairs of al of the input elements underneath the top element.

Example 04 - Adding Expressions

By adding expressions to a report, it becomes very easy to create reports that extract important information and
combineit into asingle view.

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<confi g>
<exanpl e04>
<htm >
<h1>My login is [expr] $LOG N expr] </ h1>
<t abl e>
<tr><t d>Nunber of tasks</td><td>[expr] @OUNT(sthpw task)[/expr]</td></tr>
<tr><t d>Nunber of checki ns</td><td>[expr] @COUNT(st hpw/ snapshot)[/expr]</td></tr>
<tr><td>Nunber of nodel checkins</td>
<t d>[expr] @COUNT(st hpw/ snapshot [' context', ' nodel '])[/expr]</td>
</[tr>
</t abl e>
</htm >
</ exanpl e04>
</ confi g>

Expression can be added into the html code by inserting it between [expr][/expr] tags. Theexpression will be evaluated
and the result will be replaced into the html. This provides an ability to layout an arbitrary layout in javascript and
then fill in the missing datawith expressions. The full power of the TACTIC expression language is available. Please
refer to the expression language reference for more information on the expression language.

Example 05: Mako integration (2.6.0+)

The CustomL ayoutWdg can make use of the Mako templating engine to create dynamic content. Mako is a powerful
templating system similar in concept to PHP, but instead uses the Python programming language. The expression
language on its own is quite powerful, but it is still and expression lanaguage and sometimes, it is necessary to have
full programming logic. Mako provides a path to create content that is too complex for the expression alnaguage
to handle alone.

The following example shows areport generated with the help of Mako:

45

TACTIC Developer

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<l-- Sinple test using nako tenplating -->
<config>
<exanpl e06 i ncl ude_mako="true' >
<ht m >
<di v>
<! [CDATA[
<%
get sone data
total =0
for ctx in ['nodel', 'texture', 'rig']:
num snapshots = server. eval (" @OUNT(st hpw snapshot['context','%'])" % ctx)
context.wite("Nunber of % checkins: %
" % (ctx, numsnapshots))
total += num snapshots
%
Total nunmber of tasks: ${total }

11>

</ di v>
</htm >

</ exanpl e06>
</ confi g>

Mako is not enabled by default. This must done with with the "include_make" attribute:

<exanpl e06 i ncl ude_mako='true' >

All code between <% and %> tags are parsed as python code and executed on the server. In order to write out to the
html, Mako uses the context.write() method. This is important to note because the "context" is a reserved word in
Mako. This can cause aconfusing error because context is acommon variable name when programming in TACTIC.

context.wite("Nunber of % checkins: %
" % (ctx, numsnapshots))

The python code with the python block can still make use of the entire TACTIC Client API through the use of a
builtin variable "server". This also means that expressions can be acccesed here as well:

num snapshots = server. eval (" @OUNT(st hpw snapshot['context','%'])" % ctx)

Also notethat the entire Mako code iswrapped around an XML CDATA block (<![CDATA] ...]]>). Thisisbecause
python code very easily breaks XML integrity rules. The CDATA block allows for any special characters to be
entered in the XML document. It is good practice to add the CDATA tagsin order to avoid errors later on.

Any variablesthat are declared in python blocks can be accessed outside of the python blocks using the ${ var} syntax.
The following will replace ${ total} with the corresponding variable defined in the python block.

Total nunber of tasks: ${total}

Combining the expression language with Mako Templating provides unlimited flexibility in creating complex reports.

46

TACTIC Developer

Example 07 - Using a CustomLayoutWdg inside of a
TableLayoutWdg
The CustomL ayoutWdg can be used inside of atable element. This makes it easy to create arbiraritly complex table

elements within a standard TACTIC table layout widget. The following displays the number of tasks for the row
sobject.

<config>
<my_vi ew>
<el enent nane=' num t asks' >
<di spl ay class="tactic.ui.panel.CustonlLayout Wig' >
<ht m >
<div class="top' >
[expr] @COUNT(st hpw/ t ask) [/ expr] tasks
</ di v>
</htm >
<behavi or >{
"type': 'load',
'cbjs_action': "'’
var search_key = bvr. kwargs. search_key;
al ert (search_key)

} </ behavi or >
</ di spl ay>
</ el ement >
</ my_vi ew>
</ confi g>

This element behavesjust like the previous CustomL ayoutWdg, however there areafew additions. Thereisastarting
sobject that corresponds to the table row that is passed in and is used as the starting sobject for al expressions. The
following expression finds the number of tasks for the sobject in question and not all of the tasks in the system.

[expr] @OUNT(st hpw/ t ask) [/ expr] tasks

Another addition is that callbacks have the search key of the sobject for the row available through the bvr object
passed into the behvaior callback.

var search_key = bvr. kwargs. search_key;

With the search key, it becomes possible to use the client API to change data or checkin filesfor that specific sobject.

Example - Connecting to the server from Javascript

It is often necessary to be able to interact with the server using Javascript in a behavior callback. Thisis done using
the Javascript implementation of the TACTIC Client API

The following example illustrates how to interact with the server using the TacticServerStub object. This object is
used to issue commands that will be run on the server such as updating datain the database or checking in files.

First, add any image in "C:/Temp/test.jpg"

47

TACTIC Developer

<?xm version='"1.0" encodi ng=' UTF- 8" ?>

<config>

<exanpl e04>

<htm >

<div cl ass='spt_top'>
<t ext area nane='description' class='spt_input'></textarea>
<input type='button' class='spt_buttonl' value='Press M'/>

</ di v>

</htm >

<behavi or cl ass='spt_buttonl' >{
“"type": "click_up",
"cbjs_action": """’
var top = bvr.src_el.getParent('.spt_top')
var values = spt.api.Uility.get_input_val ues(top)
var description = val ues. description

var applet = spt. Appl et. get ()
var paths = appl et.open_file_browser("C:/ Tenp")
var path = paths[O0];

var search_key = bvr. kwargs. search_key()

var server = TacticServer Stub. get()
server. checki n(search_key, "icon", path, {description: description})

} </ behavi or >

</ exanpl e04>
</ confi g>

The applet isused to interact with the client machine. It definesanumber of useful methods such aslisting directories,
moving and copying files, uploading and downloading files. For a complete list of the functionality present in the
applet, please refer to the Applet Reference manual. In this case, the example is using the applet to open up afile
browser so the user can select afile.

var appl et = spt. Appl et. get()
var paths = appl et.open_fil e_browser("C:/Tenp")
var path = paths[O0];

The search key can be obtained from the behavior. Thiswill be required to check into the correct sobject.

var search_key = bvr. kwargs. search_key()

Once afile path has been selected, the server stub is used to check in the file to the server.

var server = TacticServer Stub. get();
server. checki n(search_key, "icon", path, {description: description});

Example 10 - Converting to a button

Generally, it is not desirable to show afull interface for the checking directly in the table cell. It is much cleaner to
have a simple publish button that will open up the interface in a pop-up.

48

TACTIC Developer

Example 11 - Integrating Server Side widgets

Many widgets are defined on the server side. These can be integrated in a custom interface by using the TACTIC
specific <element> tag in the html definition of a CustomLayoutWdg.

<confi g>
<exanpl e11>
<ht m >
<h1>This is a list of users</hl>
<el enent nane='users'/>
</htm >
<el enent nane='users' >
<di spl ay class='tactic.ui.panel.Tabl eLayout Wig' >
<sear ch_t ype>st hpw/ | ogi n</ search_t ype>
<vi ew>t abl e</ vi ew>
</ di spl ay>
</ el enent >
</ exanpl e11>
</ confi g>

Widget Development

Asof 2.5, al widgets are derived from BaseRefreshWdg. This refresh widget is a new style widget which has some
added functionality allowing to to be "smart” enough to refresh itself. It also standardizes the interface for passing
construction parameters to the widget. All new style widgets take kwargs (keyword arguments) as argumets to the
constructor

wi dget = MyW dget (opti onl=val uel, option2=val ue2)

All new style widgets defined a method called "get_args keys', which return adictionary of defined and allowable
arguments:

def get_args_keys(ny):
return {
"optionl": "this is option #1"
"option2": "this is option #2"
}

TACTIC provides the ability to create your own widgets and integrate them seamlessly into the TACTIC interface.
There are 3 main types of widgets:

Widget: A widget derived from athe base Widget classis afree standing widget that requires no parent widget.
Table Element Widget: An element widget is awidget that needs expected to be put inside a Tablel ayoutWdg.

Input Widget: Aninput widget is awidget that requires one or more values to put entered or extracted.

Create your own custom widget
Y ou can create your own custom widgets in Tactic that become completely integrated in the user interface.
All widgets are derived from the base Widget (pyasm.web.Widget) class. This class defines the fundamental

functionality required for all widgets that appear in TACTIC. To create your own widget, you can derive off of this
class.

49

TACTIC Developer

Hello World

In order to start showing how custom widgets can be created, we will start with the base "Hello World" widget.
Create a folder called "custom" and then create a new file called "hello_world_wdg.py" in this new folder. In the
file add the following lines:

from pyasm web i nport W dget
cl ass Hel | oWor| dWig(W dget) :

def get_display(ny):
return "Hello World"

In order for TACTIC to be able to use this class, TACTIC must be able to see this file: this "custom" folder must be
either inthe PY THONPATH or in sys.path of the TACTIC process (you can aternatively, use any classthat complies
with Python's module handling.

: Note
1

Y ou can also usethe python_path variableinthe TACTIC config fileto add pathsto the sys.path dictionary

In order to view this widget quickly, you can open up the javascript editory and type:

spt. panel .| oad("custom hel | o_wor| d_wdg. Hel | oWor | dWdg") ;

and press the "Run" button. Y ou should see the following:

CG Production o~

Javascript Editor

Note that the title does not change. This is something that the link will do automatically.

Formatting the Widget

We could format the widge alitlle more using some basic HTML widgets.
from pyasm web i nport Wdget, Di v\Wig

cl ass Hel | oWor| dWdg2(W dget) :
def get_display(ny):
top = D vWig()
top. add_styl e("font-size: 15px")
top. add_styl e("margi n: 30px")
top. add_styl e(" paddi ng: 30px")
top. add_styl e("w dth: 150px")
top.add_style("text-align: center")
top. add_styl e("border: solid 1px bl ack")

top. add("Hell o Worl d")

return top

50

TACTIC Developer

Adding thisto afile called hello_world_wdg2.py and then in javascript editor, type:

spt. panel . | oad("cust om hel | o_wor| d_wdg2. Hel | oWor | dWig2") ;

Pressing the "Run" button gives:

CG Production o~

My viewre

HTML

Here we introduce the basic HTML widget DivWdg. The add_style() allows you to add arbitrary CSS styles to the
widget. There are various operations that can be added to HTML widgets that are useful for formatting the layout
of the page. These methods include:

set_attr(name, value)

e add style(name, value)

e add class(css class)

e add_event(event, js_action)

There are few useful predefined widgets that sit on top of HtmlElement:
« DivWdg

e SpanWdg

e Table

These are all based of of HtmlElement which are basic html elements and provide a thin layer above HTML.
Html Element also defines a number of static constructors to address most HTML elements:

e HtmlElement.br()
e HtmlElement.p()
e HtmlElement.br()

These return variations of HtmlElement that represent the different HTML elements. These are useful for laying out
acomplex widget. All HTML elements and their properties are accessible from these.

Using other widgets

Y ou can add other predefined widget, for example, the CalendarWdg

from pyasm web i nport Wdget, D vWig

51

TACTIC Developer

fromtactic.ui.w dget inmport Cal endarWg

cl ass Hel | oWor | dWig3(W dget) :
def get_display(ny):
top = Di vWig()
top. add_styl e("font-size: 15px")
top. add_styl e("margi n: 30px")
t op. add_styl e("paddi ng: 30px")
top. add_styl e("w dth: 200px")
top. add_style("text-align: center")
top. add_styl e("border: solid 1px bl ack")

top. add("Hell o Worl d")

cal endar = Cal endar Wig()
t op. add(cal endar)

return top

Adding thisto afile called hello_world_wdg3.py and then in javascript editor, type:

spt . panel .| oad("cust om hel | o_wor| d_wdg3. Hel | oWor | dWig3") ;

Pressing the "Run" button gives:

CG Production £~

This adds one of the predefined widget "CalendarWdg". Widgets are hierarchical and can be added to other widgets.
Any widget can embed any other widget within it's display. This provides a very flexible archictecure for building
up complex hierarchical widgets.

Create your own table element widget

There is a special class of widgets that are designed to be used in conjuntion with Tablel ayoutWdg, the primary
widget used for laying out tabular data. These widgets should be derived from BaseT abl eElementWdg, which extends
the basic Widget class with a number of specific methods.

The TableLayoutWdg usesit's child widgets dightly differently than most widgets. It creates asingle widget for each
column and calls the get_display() method repeatedly for each row; each row representing a single sobject. Each
element widgets does have knowledge of all of the sobjects, however, for each row, there will be a current sobject

52

TACTIC Developer

set. Thismeansthat the widgets get_display() method will be called repeatedly for each row. So, instead of operating
on alist of widgets, the table element widget should get the current widget using the "get_current_widget()" method.

The following is a simple example of atable element widget.

from pyasm web i nport Di viMg
fromtactic.ui.comon inport BaseTabl eEl ement Wig

cl ass MyEl ement Wig(BaseTabl eEl enent Wig) :
def get_display(ny):

sobject = ny.get_current_sobject()
first_name = sobject.get_val ue("first_name")
| ast _name = sobj ect. get _val ue("Il ast _nanme")
div = D v\Wig()
div.add("% %" % (first_nanme, |ast_nane))
return div

The classis amost identical to aregular class, except that it is derived from BaseTableElementWdg and that it uses
get_current_sobject() to get the current sobject being drawn. This widget still has access to al of the sobjectsin all
of the rows, through get_sobjects(), if thisis necessary.

To test this, save the code above in afile called my_element_wdg.py and enter thisinto the javascript editor:

i Note

Thisonly worksin 2.6: in 2.5, you have to create the view in the widget config table

var config =" \
<config><test> \
<el ement name=' nane' > \
<di spl ay cl ass=' custom ny_el enent _wdg. MyEl enent Wig' / > \
</ el ement> \
</test></config>";

var args = {
‘search_type': 'sthpw | ogin',
'view: 'test',
‘config_xm': config,
‘do_search': 'true'

b

spt. panel .| oad(" mai n_body", "tactic.ui.panel.Tabl eLayout \Wg", args);

Pressing the "Run" button gives:

CG Production T~ System Administrator [change-ps

11 items found @ -1 - ') L~
lame

Javascript Editor

Run Save

Script Path:

Fil Previz
Garth Rigger

rector

/", "tactic.ui_panel_ Table

53

TACTIC Developer

Y our custom table element widget completely integrates within the TACTIC interface. You can add other widgets
by expanding the config definition.

var config =" \
<config><test> \
<el ement name='preview /> \
<el enent nanme=' nane' > \
<di spl ay cl ass=' cust om ny_el enent _wdg. MyEl ement Wig' / > \
</ el ement > \
<el ement name='emmil'/> \
</test></config>";

var args = {
'search_type': 'sthpw login',
‘view : 'test',
‘config_xm': config,
'do_search': 'true'

i ¢

spt. panel . | oad(" mai n_body", "tactic.ui.panel. Tabl eLayout Wig", args);

This adds a preview and an email column (which are predefined for sthpw/login search type) and appear with your
custom widget.

CG Production o~ ! m Administrator [l

oi-n H-[o -

Albert Modeller

Fil Previz

animation. com

TACTIC Developer

BaseTableElementWdg

This example describes how to create your own BaseT ableElementWdg to execute a server-side command. The user
can type some wordsin the text field, and then click on the"Action" button. The wordswill be written as the content
of afilein the /tmp folder of the server. In the tactic config file, tactic_linux-conf.xml, let's say the python_path is'/
home/apache/custom'. Y ou can create afile called custom _wdg.py and __init__.py init.

Input:.
Hello 11!

| Action '

nput:
lexample|

Hereisthe content of__init__.py:

from customwdg i nport *

Hereisthe content of custom_wdg.py:

_all__ = ['Custoniool El enent Wig' , ' Cust onCnd']
fromtactic.ui.comon inport BaseTabl eEl ement Wig
fromtactic.ui.w dget inmport ActionButtonWg
from pyasm web i nport Htm El ement, SpanWig

from pyasm w dget inport TextWig

from pyasm conmand i nport Conmand

cl ass Cust onilrool El emrent Wig(BaseTabl eEl ement Wig) :
def get_display(ny):
top = Di vWig()
top. add_cl ass(' spt _custom t ool _top')

text = TextWg("' user_input')

action_button = ActionButtonWig(title="Action', tip="Wite a file in /tnp based on the
data in the text field")
action_button. add_behavior({'type':'click_up',

‘cbjs_action': '''var server = TacticServerStub.get();

try {
var top = bvr.src_el.getParent(".spt_customtool top");
var val ues = spt. api.get_input_val ues(top, null, false);

this path is assuned inmportable in your Python environment
server. execute_cnd(' cust om wdg. Cust onCnd' , val ues);

}
catch(e) {

al ert (spt. exception. handl er(e));
}

D)

t op. add(SpanWdg(' I nput:', css="small"))

55

TACTIC Developer

t op. add(t ext)
top. add(Ht m El ement . br ())
t op. add(acti on_butt on)

return top
cl ass Cust onCrrd(Command) :

def execute(ny):
text = ny.kwargs. get (' user_input')
f = open('/tnp/ny_file.txt',"w)
f.wite(text)
f.close()

If you click thefirst "Action” button, afile with "Hello !!!" will be created. On clicking the second "Action™ button,
the file content will be replaced with the word "example".

56

TACTIC Developer

Plugins

Plugin Manager interface

Plugins 1
Plugin List & Plugin "Examples" (DEV)
adobe
Files
«” Examples [pev
my_first_plugin joev 2 %)
«” Phone Theme o2

«” Pinboard Widget joev
Ihomefapachefactic_datal/pluginsfexamples

Built-in Plugin List doc.html
exampled0.spt
TACTIC example002.spt
Default TACTIC Theme oev example003.spt
I exampled04.spt

example00s.spt

+” Unittest Project o= example00&.spt

manifestxml

Plugin Manager
The plugin Manager View iswhere you will be managing all your plugins. From this view, you can create a plugin,
fully install aplugin, and modify existing plugins. Y ou can find all your installed pluginsin the plugin list at the | eft

hand side of the view. This shows all the plugins you have installed along with all the built-in plugins which have
come with your TACTIC installation. After selecting a plugin, you have access to:

Plugin Info:

* Name

¢ Code: Thisisan important entity

¢ Version: Imporant when you are planning to use or create multiple versions of a plugin
e Description

Documentation:

 shows all the documentation which has been provided for the plugin from the devel oper
Manifest file:

« ahility to export the manifest.xml

« ability to publish the plugin (more information on thisin the documentation on creating a plugin)
« contains technical information about the plugin

« can find more information about this in the documentation about creating a plugin

Files: The files tab shows the raw folder structure and files of the plugin. From here, a number of file operations
can be performed.

57

TACTIC Developer

Adding files (Uploading)

¢ Removing files

Creating folders

¢ Renaming files
Create a Plugin

What is a technical description of a TACTIC plugin?

A plugin isaself-contained package of filesthat TACTIC can make use of to extend the base functionality. Virtually
any functionality in TACTIC can be made into a plugin.

A plugin can contain:

* project configuration data
* any database data

* jsfiles

o cssfiles

* documentation

¢ python files

manifest.xml file

The manifest file is a description of the entries in the database that are owned by the plugin. This allows the plugin
manager to extract the appropriate database entries and commit the .spt files. It contains elements like:

data: a collection of name/value pairs that describe information about the plugin
* code

¢ description

e version

sobject: describes which sobjects the plugin contains. It's an expression of the form <sobject
search_type="[search_type]”> with attributes:

« code: the specfic code of the object

e expression: an expression of which all matched sobject will belong to the plugin

« path: therelative .spt file path that all sobjects will be written to

 ignore_columns: a comma seperate list of columns for the plugin exporter to ignore

» There are some special attributes for specific search types. The config/widget_config search type has the attribute:

* view

58

TACTIC Developer

.Sspt files

.9pt files are database files that contain database schema structure and database data. These files enable TACTIC to
read and write database data that isboth platform and databaseindependent. Thisabstractionsallows TACTIC plugins
to be used on any supported TACTIC platform. An important design criteria of .spt files are that they are human
readable even when the database entry contains xml or software code. More importantly, they can be easily diff’ed
using standard software tools so that the code produced can show proper diffs using any source code management
system (such as Perforce, SVN or Git). Thisis essential for collaborative work building pluginsto delivery to a 3rd

party.
Creating the Plugin

Once you are in the plugin manager, you can the New button which creates a new plugin outline. Afterwards, you
can start filling in the details like name, type, etc. On creation, a plugin type can be specified. Depending on the
plugin type a number of bootstrap data will be created to support the structure of the plugin. After selecting Create,
the plugin will be created and you will be able to seeit in the plugin list.

If you go to the documentation tab, you will find that you are able to create new documentation if the documentation
doesn't exist. Thiswill create a new file, doc.html, which you can edit now.

To add files to the plugin, select the plugin and go to the files tab. Here, you will find many options like the ability
to upload or simply create a new file. The new files that you are uploading or creating are used properly when their
purpose is explained in the manifest.xml file.

After customizing the plugin to your needs, you can now package the plugin to perhaps upload to the community site
so others can use it. Documentation on packaging can be found in this section under Packaging a Plugin.

Best Practices

Widget config tables should not include code or id columns or they must be explicitly set to valuesthat are guaranteed
to be unique on any installation of TACTIC. Otherwise, the plugin should not depend on the value of the code or
id column.

Thisisalso true of “custom_scripts” written in the script editor.

When referring to an sobject, always search by code (not id). When doing this, make sure the code contains a
namespace that will not conflict with any other plugin.

59

TACTIC Developer

Packaging a Plugin

Plugin "Plugin Manager" (DEV)

Jl.l'lanifest [Files

| Exeort Fl Publish F

=manifest=
=data=
=code=community/plugin_manager=/code=
=title=Plugin Manager=fitle=
=description=Flugin Manager used in the community site=/description=
=/data=
=sobject search_type="config/widget_config” view="plugins.*" path="plugins.spt” ignore_columns="id,code"/=
=/manifest=

Plugin Directory

A TACTIC plugin packageissimply a.zipfile containing all thefilesof aplugin. Pluginsareinstalled inthefollowing
directory:

<TACTIC_DATA_DIR>/plugins
The .zip filesare usualy stored in:

<TACTIC_DATA_DIR>/dist

Categories of Plugins

Plugins are defined into categories. Dueto the flexibility of the plugin architecture, asingle plugin can packagetools,
columns, and themes in any combination. These categories are only used to organize plugins and can also bootstrap
common functionality that would be packaged into a plugin.

All of these will have most of the view definitions in the Custom Layout Editor. Each individual view can have a
type. See Custom Layout Editor documentation for more information on this.

 project: this defines the structure of the project. It may or may not include atheme, but it is usually possible to use
different themes for a given project provided the theme has been set up correctly.

» theme: a theme defines the look and feel of a project as experienced by end users. A theme should have the
following requirements:

» ameans of displaying links as represented by the side bar.
« ameans of logging out
« overriding the login page (optional)

e column - This represents a plugin that will be added to columnsin atable. These will generally consist of one or
more columns that can be added to a tabular layout.

 tool - A tool isawidget that provides additional functionality to the users. Generally atool needs to be launched
by a button or a menu item from the sidebar.

60

TACTIC Developer

Publishing the Plugin

To package your created plugin to the tactic data directory, select the plugin and go to the manifest tab. Here, you
can make sure that the plugin is named and versioned appropriately. Y ou now need to make sure that the manifest
you've wrote is exported, exporting saves the manifest data you have there to the manifest.xml file.Y ou can now
select Publish and TACTIC will package all the files and create a .zip file of the plugin folder from the root plugin
folder (ie: <TACTIC_DATA_DIR>/plugins). When aversion is published, the folder of the current plugin is taken
and copied to a new folder with the name <PLUGIN_CODE>-<VERSION>. Note that the PLUGIN_CODE can
have “/” to present folders.

Expression Development

Using Expressions in Scripting
Using Expressions in Python - Server code

Expressions can be accessed directly through Python code. The expression language is often very convenient to
quickly perform relatively complex searches quickly and easily.

To access the expressions in Python, you would use the following code:

from pyasm bi z i nport Expressi onParser

parser = ExpressionParser ()

expr = "@ET(prod/shot['code','chr001']. prod/shot_instance. prod/ asset. code)"
result = parser.eval (expr)

It is often more convenient just to access it through the Search module;

from pyasm search i nport Search
expr = "@ET(prod/shot['code',' chr001']. prod/shot _i nstance. prod/ asset. code)"
result = Search. eval (expr)

Using Expressions in Python - Client API code

To access the expressions in the Python Client API, you would use the following code:

server = TacticServer Stub. get ()
expr = "@BET(prod/shot['code',' chr001']. prod/shot _i nstance. prod/ asset. code) "
result = server.eval (expr)

When the expression language returns sobjects, these will be in the form of a dictionary like al other sobjects in
the client API.

Using Expressions in Javascript - Client API code

To access the expressions in the Javascript Client API, you would use the following code:

61

TACTIC Developer

var server = TacticServer Stub. get()
expr = "@ET(prod/shot['code',' chr001']. prod/shot _i nstance. prod/ asset. code)"
var result = server.eval (expr)

Using Expressions in Widget Config
The main widget to use expressions is "tactic.ui.table.ExpressionElementWdg".

When using the ExpressionElementWdg, the starting point of the expression is automatically the SObject associated
with the row. This allows you to use the shorthand form without having to filter.

<el ement name='code' >
<di splay class="tactic.ui.tabl e. Expressi onEl enent Wig' >
<expr essi on>@ET(. code) </ expr essi on>
</ di spl ay>
</ el ement >

Using Expressions inline in HTML

When using the CustomL ayoutWdg, inline expressions are supported using a [expr][/expr] tag formatting.

<di v>
<h2>There are [expr] @OUNT(prod/asset['asset _library', 'chr'])[/expr] Characters</h2>
</ di v>

Using Expressions in CustomLayoutWdg

The custom layout widget has a specia html tag which can have html embedded within it. CustomLayoutWdg
provides the ability to embed expressions within its html definition.

The following demonstrates a widget config using expressions:

<?xm version='"1.0" encodi ng=' UTF-8' ?>
<confi g>
<exanpl e>
<htm >
<t abl e>
<tr><td>[expr] $LOG N[/ expr] </td></tr>
<tr><td>[expr] { @ET(.code)} : {@ET(.description)}[/expr]</td></tr>
</t abl e>
</htm >
</ exanpl e>
</config>

Please refere to the CustomLayoutWdg in the Widget Reference documentation for more information on how to use
the CustomL ayoutWdg.

62

TACTIC Developer

Validation
Validation Set-up

To limit what a user can enter in afield, you can set up validation for the column. It is particularly useful when the
user is required to type in atext field instead of a selection list. This works on the client side so it activates before
you click on the save button.

Example 1: Ensure the field description of prod/shot starts with the word "Client"

In the edit view of prod/shot, make sure there is an element for description defined with these display options:

<el ement nane=' descri pti on' >
<di spl ay cl ass=' Text Wig' >
<validation_js>return value.test(/"dient/)</validation_js>
<val i dati on_warni ng>lt needs to start with Cient</validati on_warni ng>
</ di spl ay>
</ el ement >

If the person types in something, press Enter and it fails the validation, the text field will turn red. Y ou can view
the warning message when the mouse pointer is over the text field. The variable 'value' is assumed to be value the
user typesin.

Example 2: Ensure the field description of prod/shot contains the code in the same row. The assumption is that the
user would pick a show code in the previous column before typing in a description.

In the edit view prod/shot, make sure there is an element for description defined with these display options:

<el ement nane=' descri pti on' >
<di spl ay cl ass=' Text Wig' >
<val i dati on_scri pt >val i dat e_desc</val i dati on_scri pt >
<val i dati on_warni ng>lt needs to contain the shot code</vali dati on_warni ng>
</ di spl ay>
</ el ement >

The script it refersto is ajavacript saved in the Script Editor. It has a code equal to 'validate desc'.

/'l value, display target_el, and bvr are assuned vari abl es
var row = display target _el.getParent('.spt_table tr');
var td = row. get El enent (' td[spt_el ement _name=shot code]"');
var shot _code = td.getAttribute(' spt_input_val ue');
var exp = new RegExp(shot_code);
if (!shot_code) {

return fal se;

if (value.test(exp)) {
return true;

}
el se {

return fal se;
}

Like'value, 'display_target €' and 'bvr' are assumed variables.. The former represents the html element holding the
value whereas the latter is the behavior object.

63

TACTIC Developer

TACTIC Python Client APl Reference

TACTIC Developer

Init
__init__(login=None, setup=True, protocol=None, server=None, project=None, ticket=None, user=None,

password="")

Initialize the TacticServerStub

keyparam:

login - login_code

setup - if setto True, it runs the protocol set
protocol - xmlrpc or local. it defaults to xmlrpc
server - tactic server

project - targeted project

ticket - login ticket key

user - tacticlogin_code that overrides the login

password - password for login

65

TACTIC Developer

abort

abort(ignore_filessFalse)
Abort the transaction. This undos all commands that occurred

from the beginning of the transactions

keyparam:

ignore files: (boolean) - determinesif any files moved into the
repository are left asis. Thisis useful for very long processes
whereit is desireable to keep the files in the repository

even on abort.

example:
A full transaction inserting 10 shots. If an error occurs, al 10

inserts will be aborted.

server.start (' Start addi ng shots')
try:

for i in range(0, 10):

server.insert("prod/shot", { 'code': 'X&®.3d' % })

except:

server. abort ()
el se:

server.finish("10 shots added")

66

TACTIC Developer

add_config_element

add_config_element(search_type, view, name, class name=None,
action_class name=None, action_options={}, element_attrs={},login=None,
auto_unique _name=False, auto_unique view=False)

This method adds an element into a config. It is used by various

Ul components to add new widget element to a particular view.

param:
search_type - the search type that this config belongs to
view - the specific view of the search type

name - the name of the el ement

keyparam:

class name - the fully qualified class of the display

action_class name - thefully qualified class of the action

display_options - keyward optionsin adictionary to construct the specific display
action_options - keyward optionsin a dictionary to construct the specific action
element_attrs - element attributes in a dictionary

login - login nameif it isfor a specific user

unique - add an unique element if True. update the element if False.
auto_unique_name - auto generate a unique element and display view name

auto_unique_view - auto generate a unique display view name

return:

boolean - True

example:

Thiswill add a new element to the "character" view for a 3D asset

search_type = 'prod/asset’
view = 'characters'
class_nane = 'tactic.ui.comon. Si npl eEl enent Wig'

server.add_confi g _el enent (search_type, view, class_nane)

display_options={},

unique=True,

Thiswill add a new element named "user" to the "definition” view. It contains detailed display and action nodes

67

TACTIC Developer

data_dict = {} # sone data here
search_type = 'prod/asset'’
server. add_config_el enent (search_type, 'definition', 'user', class_nane
= data_dict['class_nane'], display_options=data_dict['display_options'],
el enent _attrs=data_dict['elenent_attrs'], unique=True,
action_cl ass_nane=data_di ct[' acti on_cl ass_name'], action_options=data_dict['action_options'])

68

TACTIC Developer

add_dependency
add_dependency(snapshot_code, file_path, type="ref*)
This method will append a dependency referent to an existing checkin.
All files are uniquely containe by a particular snapshot. Presently,
this method does a reverse lookup by file name. This assumes that
the filename is unique within the system, so it is not recommended
unlessit is known that naming conventions will produce unique
file names for every this particular file. If thisis not the

case, it isrecommended that add_dependency by code() is used.

param:

snapshot_code - the unique code identifier of a snapshot
file_path - the path of the dependent file. Thisfunctionis able
reverse map thefile_path to the appropriate snapshot
keyparam:
type - type of dependency. Valuesinclude 'ref' and ‘input_ref'

ref = hierarchical reference: ie A contains B

input_ref = input reference: ie: A was used to create B

tag - atagged keyword can be added to a dependency to categorize
the different dependencies that exist in a snapshot

return:

dictionary - the resulting snapshot

69

TACTIC Developer

add_dependency by code
add_dependency_ by _code(to_snapshot_code, from_snapshot_code, type="ref*)
Append a dependency reference to an existing checkin. This dependency
is used to connect various checkins together creating a separate

dependency tree for each checkin.

param:

to_snapshot_code: the snapshot code which the dependency will be
connected to

from_snapshot_code: the snapshot code which the dependency will be
connected from

type - type of dependency. Vauesinclude 'ref' and 'input_ref’

ref = hierarchical reference: ie A contains B

input_ref - input reference: ie: A was used to create B

tag - atagged keyword can be added to a dependency to categorize

the different dependencies that exist in a snapshot

return:

dictionary - the resulting snapshot

70

TACTIC Developer

add_directory
add_directory(snapshot_code, dir, file_type="main', mode=" copy" , dir_naming="", file_naming="")
Add afull directory to an aready existing checkin.
Thisinforms TACTIC to treat the entire directory as single entity
without regard to the structure of the contents. TACTIC will not
know about the individual files and the directory hierarchy within
the base directory and it it left up to the and external program
to intepret and understand this.
Thisis often used when logic on the exact file structure existsin
some external source outside of TACTIC and it is deemed to complictaed

to map thisinto TACTIC's snapshot definition.

param:

snapshot_code - aunique identifier key representing an sobject
dir - thedirectory that needsto be checked in

keyparam:

file_type - filetypeis used more as snapshot type here

mode - copy, move, preallocate, manual, inplace

dir_naming - explicitly set adir_naming expression to use
file_naming - explicitly set afile_naming expression to use
return:

dictionary - snapshot

example:

Thiswill create a new snapshot for asearch_key and add a directory using manua mode
dir = 'C/images'

handof f _dir = mny. server.get_handoff _dir()
shutil.copytree(' %s/subfol der' 9%lir, '%/inmages/subfol der' %handoff _dir)

snapshot _di ct = ny. server. create_snapshot (search_key, context='render")
snapshot _code = snapshot _di ct.get (' code')
my. server. add_di rectory(snapshot _code, dir, file_type='dir', node='manual ')

71

TACTIC Developer

72

TACTIC Developer

add_file

add_file(snapshot_code, file_path, file_type='main’, use_handoff_dir=False, mode=None, create_icon=False)
Add afileto an aready existing snapshot. This method is used in
piecewise checkins. A blank snapshot can be created using
create_snapshot(). This method can then be used to successively

add files to the snapshot.

In order to checkin thefile, the server will need to have access

to these files. There are anumber of ways of getting the files

to the server. When using copy or move mode, the files are either
copied or moved to the "handoff_dir". This directory

is an agreed upon directory in which to handoff the files to the

server. Thismodeis generally used for checking in user files.

For heavy bandwidth checkins, it is recommended to user preallocated

checkins.

param:

snapshot_code - the unique code identifier of a snapshot
file_path - path of thefileto add to the snapshot.

Optional: this can also be an array to add multiple files at once.
This has much faster performance that adding one file at atime.
Also, note that in this case, file_types must be an array

of equal size.

keyparam:

file_type - type of thefile to be added.

Optional: this can also be an array. Seefile_path argument

for more information.

use_handoff_dir - DEPRECATED: (use mode arg) use handoff dir to checkin
file. The handoff dir is an agreed upon directory between the

client and server to transfer files.

mode - upload|copy|movelmanual |inplace

73

TACTIC Developer

thefile to the server.

create icon - (True|False) determine whether to create an icon for
this appended file. Only 1 icon should be created for each
snapshot.

dir_naming - explicitly set adir_naming expression to use

file_naming - explicitly set afile_naming expression to use
return:

dictionary - the resulting snapshot

example:
Thiswill create ablank model snapshot for character chrO01 and

add afile

search_type = 'prod/ asset

code = 'chr001'

search_key = server. build_search_type(search_type, code)
context = 'nodel’

path = "./ny_nodel . ma"

snapshot = server.create_snapshot (search_key, context)
server.add_fil e(snapshot.get('code'), path)

Different files should be separated by file type. For example,

to check in both a maya and houdin file in the same snapshot:

maya_path = "./my_nodel . ma"
houdi ni _path = "./ny_nodel . hi p"

server.add_fil e(snapshot_code, maya_path, file_type=' maya')
server.add_fil e(snapshot_code, houdini_path, file_type=" houdini')

To transfer files by uploading (using http protocol):

server.add_fil e(snapshot_code, maya_path, node='upload')

To create an icon for thisfile

74

TACTIC Developer

path = 'image.jpg’
server.add_fil e(snapshot_code, path, node='upl oad', create_icon=True)

To add multiple files at once

file_paths = [maya_path, houdi ni _pat h]
file_types ['maya', 'houdini']
server.add_fil e(snapshot_code, file_paths, file_types=file_types, node='upload')

75

TACTIC Developer

add_group

add_group(snapshot_code, file path, file_type, file_range, use_handoff_dir=False, mode=None)
Add afile range to an aready existing snapshot

param:

snapshot_code - the unique code identifier of a snapshot
file_path - path of thefileto add to the snapshot
file_type - type of thefile to be added.

file_range - range with format s

keyparam:

use_handoff_dir - use handoff dir to checkin file

mode - one of 'copy’,'move,'preall ocate’

return:

dictionary - the resulting snapshot

76

TACTIC Developer

add _initial _tasks
add_initial_tasks(search_key, pipeline_code=None, processes=[])
Add initial tasksto an sobject
param:
search_key - the key identifying atype of sobject asregisteredin
the search_type table.
keyparam:
pipeline_code - override the sobject's pipeline and use this one instead
processes - create tasks for the given list of processes
return:

list - tasks created

7

TACTIC Developer

build_search_key

build_search_key(search_type, code, project_code=None, column="code')
Convenience method to build a search key from its components. A
search_key uniquely indentifies a specific sobject. Thisstring

that isreturned is heavily used as an argument in the API to

identify an sobject to operate one

A search key has the form: "prod/shot?project=bar& code=X G001"

where search_type = "prod/shot", project_code = "bar" and code = "XG001"

param:
search_type - the uniqueidentifier of a search type: ie prod/asset

code - the unique code of the sobject

keyparam:
project_code - an optiona project code. If thisis not

included, the project from get_ticket() is added.

return:
string - search key

example:

search_type = "prod/ asset"

code = "chr001"

search_key = server. buil d_search_key(search_type, code)
e.g. search_key = prod/asset ?proj ect =code=chr 001

search_type = "sthpw | ogi n"

code = "adnin'

search_key = server. buil d_search_key(search_type, code, colum='code')
e.g. search_key = sthpw | ogi n?code=admi n

78

TACTIC Developer

build_search _type
build_search_type(search_type, project_code=None)
Convenience method to build a search type from its components. It is
asimple method that build the proper format for project scoped search
types. A full search type has the form:
prod/asset?project=bar.
It uniquely defines atype of sobject in a project.
param:
search_type - the uniqueidentifier of a search type: ie prod/asset
project_code (optional) - an optiona project code. If thisis not
included, the project from get_ticket() is added.
return:

search type string

example

search_type = "prod/ asset"
full _search_type = server. build_search_type(search_type)

79

TACTIC Developer

checkout

checkout(search_key, context, version=-1, file type="main’, dir=", level_key=None, to_sandbox_dir=False,
mode='copy')

Check out files defined in a snapshot from the repository. This
will copy filesto a particular directory so that a user can work

on them.

param:
search_key - auniqueidentifier key representing an sobject

context - context of the snapshot

keyparam:

version - version of the snapshot

file_type - filetype defaultsto 'main'. If set to ™', all paths are checked out
level _key -theuniqueidentifier of the level in the form of a search key
to_dir - destination directory defaultsto .’

to_sandbox_dir - (True|False) destination directory defaults to
sandbox_dir (overrides "to_dir" arg)

mode - (copy|download)

to copy thefiles to the destination location

return:

list - alist of pathsthat were checked out

80

TACTIC Developer

clear_upload_dir

clear_upload_dir()

Clears the upload directory to ensure clean checkins

param:

None

keyparam:

None

return:

None

81

TACTIC Developer

create_search_type
create search_type(sear ch_type, title, description="", has _pipeline=False)
Create anew search type
param:
search_type - Newly defined search_type
title - readabletitle to display this search type as
keyparam:
description - abrief description of this search type
has pipeline - determines whether this search type goes through a
pipeline. Simply puts a pipeline_code column in the table.
return

string - the newly created search type

82

TACTIC Developer

create _snapshot

create snapshot(search_key, context, snapshot_type="file", description="No description", is_current=True,
level_key=None, is revision=False)

Create an empty snapshot

param:
search_key - auniqueidentifier key representing an sobject

context - the context of the checkin

keyparam:

snapshot_type - [optional] descibes what kind of a snapshot thisis.
More information about a snapshot type can be found in the
prod/snapshot_type sobject

description - [optional] optional description for this checkin

is current - flag to determineif this checkin isto be set as current
is revision - flag to set thisasarevisioninstead of aversion

level _key - theuniqueidentifier of the level that this

isto be checked into

return:

dictionary - representation of the snapshot created for this checkin

83

TACTIC Developer

create_task

create task(search_key, process="publish", subcontext=None, description=None, bid_start_date=None,
bid_end_date=None, bid_duration=None, assigned=None)

Create atask for a particular sobject

param:

search_key - the key identifying atype of sobject asregisteredin
the search_type table.

keyparam:

process - process that this task belongs to

subcontext - the subcontext of the process (context = procsss/subcontext)
description - detailed description of the task

bid_start_date - the expected start date for this task
bid_end_date - the expected end date for this task

bid_duration - the expected duration for this task

assigned - the user assigned to thistask

return:

dictionary - task that was created

TACTIC Developer

delete_sobject
delete_sobject(search_key)
Invoke the delete method. Note: this function may fail due
to dependencies. Tactic will not cascade delete. This function
should be used with extreme caution because, if successful, it will

permanently remove the existence of an sobject

param:

search_key - auniqueidentifier key representing an sobject.
Note: this can also be an array.

return:

dictionary - asobject that represents values of the sobject in the

form name:value pairs

85

TACTIC Developer

directory _checkin

directory_checkin(search_key, context, dir, snapshot_type="directory", description="No description”,
file_ type="main’, is current=True, level_key=None, metadata={}, mode="copy", is revision=False,
checkin_type="strict")

Check in adirectory of files. Thisinforms TACTIC to treat the

entire directory as single entity without regard to the structure

of the contents. TACTIC will not know about the individual files

and the directory hierarchy within the base directory and it it | eft

up to the and external program to intepret and understand this.

Thisis often used when logic on the exact file structure existsin

some external source outside of TACTIC and it is deemed too complicated

to map thisinto TACTIC's snapshot definition.

param:

search_key - auniqueidentifier key representing an sobject

dir - thedirectory that needsto be checked in

keyparam:

snapshot_type - type of snapshot this checkin will have
description - description related to this checkin

file_type - the type of file that will be associated with this group
is_current - makes this snapshot current

level_key - the search key of thelevel if used

metadata - add metadata to snapshot

mode - determines whether the files passed in should be copied, moved
or uploaded. By default, thisis 'copy'

is revision - flagto set thisasarevision instead of aversion

checkin_type - auto or strict which controls whether to auto create versionless

return:

dictionary - snapshot

86

TACTIC Developer

download

Download afile from agiven url

param:

url - theurl source location of thefile

keyparam:

to_dir - the directory to download to

filename - the filename to download to, defaults to original filename
md5_checksum - an md5 checksum to match the file against
return:

string - path of the file donwloaded

87

TACTIC Developer

eval
eval(expression, search_keys=[], mode=None, single=False, vars={}, show_retired=False)
Evaluate the expression. This expression uses the TACTIC expression
language to retrieve results. For more information, refer to the
expression language documentation.
param:
expression - string expression
keyparam:
search_keys - the starting point for the expression.
mode - stringlexpression
single - True|False
vars - user defined variable
show _retired - defaultsto False to not return retired items
return:
results of the expression. The results depend on the exact nature
of the expression.
example:
#1. Search for snapshots with context beginning with 'model’ for the asset with the search key 'prod/asset?

project=sample3d& id=96'

server = TacticServer Stub. get ()
exp = " @OBJECT(st hpw snapshot[' context','EQ ,'*nodel'])"
result = server.eval (exp, search_keys=[' prod/asset ?proj ect =sanpl e3d& d=96'])

Please refer to the expression language documentation for numerous

examples on how to use the expression language.

88

TACTIC Developer

execute_cmd

execute_cmd(class_name, args={}, values={})

Execute acommand

param:

class name - the fully qualified class name of the widget

keyparam:
args - keyword arguments required to create a specific widget

values - form values that are passed in from the interface

return:

string - description of command

89

TACTIC Developer

execute pipeline
execute pipeling(pipeline xml, package)
Spawn an execution of a pipeline as delivered from
‘get_pipeline_xml()'. The pipelineisaxml document that describes
aset of processes and their handlers
param:
pipeline_xml - an xml document describing a standard Tactic pipeline.
package - adictionary of data delivered to the handlers
return:

instance - areference to the interpreter

90

TACTIC Developer

execute python_script

execute python_script(class_name, ar gs={}, values={})

Execute acommand

param:

script_path - script path in Script Editor, e.g. test/eval_sobj
return:

dictionary - returned data structure

91

TACTIC Developer

finish
finish()
End the current transaction and cleansit up
params:

description: thiswill be recorded in the transaction log as the

description of the transction

example:
A full transaction inserting 10 shots. If an error occurs, al 10

inserts will be aborted.

server.start (' Start addi ng shots')
try:

for i in range(0, 10):

server.insert("prod/shot", { 'code': 'X&®.3d' % })

except:

server. abort ()
el se:

server.finish("10 shots added")

92

TACTIC Developer

get_all children

get_all_children(search_key, child_type, columns=[])

Get all children of a particular child type of an sobject

param:

ticket - authentication ticket

search_key - auniqueidentifier key representing an sobject
child_type - the search_type of the children to search for

keyparam:

filters - extrafilters on the query : see query method for examples
columns - list of column names to be included in the returned dictionary

return:

list of dictionary - alist of sobjects dictionaries

93

TACTIC Developer

get all dependencies

get_all_dependencies(snapshot_code, mode="explicit’, type="ref’, include_paths=False,
include_paths dict=False, include files=False, repo_mode="client_repo’, show_retired=False)

Retrieve the latest dependent snapshots of the given snapshot

param:

search_key - uniqueidentifier of sobject whose snapshot we are

looking for

keyparam:

mode - explicit (get version as defined in snapshot)

- latest

- current

type - oneof ref or input_ref

include _paths - flag to specify whether to includea__paths _ property
containing all of the paths in the dependent snapshots
include_paths dict - flag to specify whether to include a
__paths dict__ property containing adict of al pathsin the
dependent snapshots

include files - includes all of the file objects referenced in the
snapshots

repo_mode - client_repo, web, lib, relative

show_retired - defaultsto False so that it doesn't show retired dependencies

return:

list - snapshots

94

TACTIC Developer

get _all paths from_snapshot
get_all_paths from_snapshot(snapshot_code, mode="client_repo’, expand_paths=False, filename_mode="")

Get all paths from snapshot

param:

snapshot_code - the unique code of the snapshot

keyparam:

mode - forcesthe type of folder path returned to use the value from the
appropriatetactic <SERVER_OS> - conf.xml configuration file.
Valuesinclude 'lib', ‘'web', 'local_repo’, 'sandbox’, 'client_repo', 'relative
lib = the NFS asset directory from the server point of view

web = the http asset directory from the client point of view

local_repo = thelocal sync of the TACTIC repository

sandbox = the local sandbox (work area) designated by TACTIC
client_repo (default) = the asset directory from the client point of view
If thereis no value for win32_client_repo_dir or linux_client_repo_dir
in the config, then the value for asset_base dir will be used instead.
relative = the relative direcory without any base

expand_paths - expand the paths of a sequence check

filename_mode - source or ", where source reveals the source_path of the check

return:

list - paths

95

TACTIC Developer

get base dirs
get_base dirg()
get al of the base directories defined on the server
return:

dictionary of al the important configured base directories

with their keys

96

TACTIC Developer

get by search_key
get_by search_key(search_key)
Get the info on an sobject based on search key
param:
ticket - authentication ticket
search_type - the key identifying a type of sobject asregistered in
the search_type table.
return:
list of dictionary - sobjectsthat represent values of the sobject in the

form of name:value pairs

97

TACTIC Developer

get_child_types
get_child_types(search_key)
Get all the child search types
param:
search_key - auniqueidentifier key representing an sobject
return:

list - the child search types

98

TACTIC Developer

get _client_api_version
get_client_api_version()
return:

string - client api version

99

TACTIC Developer

get client_dir
get_client_dir(snapshot_code, file type="'main’, mode='client_repa')
Get a dir segment from a snapshot
param:

snapshot_code - the unique code of the snapshot

keyparam:

file_type - each filein a snapshot isidentified by afile type.

This parameter specifies which type. Defaults to 'main’

mode - Forces the type of folder path returned to use the value from the
appropriatetactic <SERVER_OS> - conf.xml configuration file.
Vauesinclude'lib', 'web', 'local_repo', 'sandbox’, ‘client_repo’, ‘relative’
lib = the NFS asset directory from the server point of view

web = the http asset directory from the client point of view

local_repo = the local sync of the TACTIC repository

sandbox = the local sandbox (work area) designated by TACTIC
client_repo (default) = the asset directory from the client point of view
If thereisno value for win32_client_repo_dir or linux_client_repo_dir
in the config, then the value for asset_base dir will be used instead.

relative = the relative direcory without any base

return:

string - directory segment for a snapshot and file type

example:

If thetactic <SERVER_OS> - conf.xml configuration file contains the following:

<wi n32_client_repo_dir>T:/assets</w n32_client_repo_dir>

and if the call to the method is as follows:

snapshot = server.create_snapshot (search_key, context)

100

TACTIC Developer

code = snapshot.get (' code')
server. get _path_from snapshot (snapshot. get (' code'))

Then, on aWindows client, get_client_dir() will return:

T:/ asset s/ sanpl e3d/ asset/ chr/ chr 003/ scenes

101

TACTIC Developer

get _client_version
get_client_version()
return:

string - Version of TACTIC that this client came from

102

TACTIC Developer

get_column_info
get_column_info(sear ch_type)
Get column information of the table given a search type
param:
search_type - the key identifying atype of sobject asregistered in
the search_type table.

return - a dictionary of info for each column

103

TACTIC Developer

get _column_names
get_column_names(sear ch_type)
This method will get al of the column names associated with a search
type
param:
search_type - the search type used to query the columns for
return

list of columns names

104

TACTIC Developer

get _config_definition
get_config_definition(search_type, view, element_name)
Get the widget configuration definition for an element
param:
search_type - search type that this config relates to
view - view to look for the element
element_name - name of the element
keyparam:
personal - Trueif itisapersonal definition
return:

string - xml of the configuration

105

TACTIC Developer

get _dependencies

get_dependencies(snapshot_code, mode="explicit’, tag="main’, include_paths=False,
include_paths dict=False, include files=False, repo_mode="client_repo’, show_retired=False)

Return the dependent snapshots of a certain tag

params:

snapshot_code - unique code of a snapshot

keyparams:

mode - explict (get version as defined in snapshot)

- latest

- current

tag - retrieve only dependencies that have this named tag
include_paths - flag to specify whether toincludea___paths __ property
containing all of the paths in the dependent snapshots

include paths dict - flag to specify whether to include a
__paths _dict__ property containing adict of all pathsin the
dependent snapshots

include files - includes all of the file objects referenced in the
snapshots

repo_mode - client_repo, web, lib, relative

show_retired - defaultsto False so that it doesn't show retired dependencies

return:

alist of snapshots

106

TACTIC Developer

get_expanded paths from_snapshot
get_expanded_paths from_snapshot(snapshot_code, file type="main’)
Return the expanded path of a snapshot (used for
ranges of files)
param:
snapshot_code - the unique code of the snapshot
keyparam:
file_type - each filein a snapshot isidentified by afile type.
This parameter specifies which type. Defaults to 'main’
return:

string - path

107

TACTIC Developer

get full _snapshot xml
get_full_snapshot_xml(snapshot_code)
Retrieve afull snapshot xml. This snapshot definition
contains all the information about a snapshot in xml
param:
snapshot_code - unique code of snapshot
return:

string - the resulting snapshot xml

108

TACTIC Developer

get _handoff_dir
get_handoff_dir()

Return atemporary path that files can be copied to

return:
string - the directory to copy afile to handoff to TACTIC

without having to go through http protocol

109

TACTIC Developer

get home_dir
get_home _dir()
OS independent method to Get the home directory of the current user.
return:

string - home directory

110

TACTIC Developer

get _info_from_user
get_info_from_user (for ce=False)
Get input from the user about the users environment. Questions
asked pertain to the location of the tactic server, the project worked
on and the user'slogin and password. Thisinformation is stored in

an .<login>.tacticrc file.

keyparam:

force -if setto True, it will aways ask for new infomation from the

command prompt again

111

TACTIC Developer

get _md5_info
get_md5_info(md5_list, texture_codes, new_paths, parent_code, texture cls, file_group_dict, project_code)

Get md5 info for agiven list of texture paths, mainly returning if this md5 is a match or not

param:

md5_list - md5_list

new_paths - list of file_paths

parent_code - parent code

texture_cls - Texture or ShotTexture

file_group_dict - file group dictionary storing all the file groups
project_code - project_code

mode - texture matching mode (md5, file_name)

return:

dictionary - adictionary of path and a subdictionary of is_match, repo_file_code, repo_path, repo_file_range

112

TACTIC Developer

get_parent
get_parent(search_key, columns=[], show_retired=True)
Get the parent of an sobject.
param:
search_key - auniqueidentifier key representing an sobject
keyparam:

columns - the columns that will be returned in the sobject

show _retired - it defaultsto False so it does not show retired parent if that's the case

return:

dictionary - the parent sobject

113

TACTIC Developer

get_parent_type
get_parent_type(search_key)
Get of the parent search type
param:
search_key - auniqueidentifier key representing an sobject
return:

list - alist of child search_types

114

TACTIC Developer

get _path _from_snapshot
get_path_from_snapshot(snapshot_code, file_type='main’)
Get afull path from a snapshot
param:

snapshot_code - the unique code / search_key of the snapshot

keyparam:

file_type - each filein a snapshot isidentified by afile type.

This parameter specifies which type. Defaults to 'main’

mode - Forces the type of folder path returned to use the value from the
appropriatetactic <SERVER_OS> - conf.xml configuration file.
Vauesinclude'lib', 'web', 'local_repa', 'sandbox’, ‘client_repo’, ‘relative’
lib = the NFS asset directory from the server point of view

web = the http asset directory from the client point of view

local_repo = the local sync of the TACTIC repository

sandbox = the local sandbox (work area) designated by TACTIC
client_repo (default) = the asset directory from the client point of view
If thereisno value for win32_client_repo_dir or linux_client_repo_dir
in the config, then the value for asset_base dir will be used instead.

relative = the relative direcory without any base

return:

string - the directory to copy afile to handoff to Tactic without having to

go through http protocol

example:

If thetactic <SERVER_OS> - conf.xml configuration file contains the following:

<wi n32_client_repo_dir>T:/assets</w n32_client_repo_dir>

and if the call to the method is as follows:

115

TACTIC Developer

snapshot = server.create_snapshot (search_key, context)
code = snapshot.get (' code')
server. get _path_from snapshot (snapshot. get (' code'))

#in a trigger
snapshot _key = ny. get _i nput _val ue("search_key")
server. get _pat h_from snapshot (snapshot _key)

Then, on aWindows client, get_path_from_snapshot() will return:

T:/ asset s/ sanpl e3d/ asset/ chr/chr 003/ scenes/ chr003_ri g_v003. t xt

116

TACTIC Developer

get paths

get_paths(search_key, context="publish", version=-1, file type="main’, level_key=None, single=False,
versionless=False)

Get paths from an sobject

params:

search_key - auniqueidentifier key representing an sobject
keyparams:

context - context of the snapshot

version - version of the snapshot

file_type - filetype defined for the file node in the snapshot
level_key - theuniqueidentifier of the level that this

was checked into

single - If set to True, the first of each path set is returned

versionless - boolean to return the versionless snapshot, which takes a version of

return
A dictionary of lists representing various paths. The paths returned
are asfollows:

- client_lib_paths: all the paths to the repository relative to the client
- lib_paths: al the paths to the repository relative to the server

- sandbox_paths: all of the paths mapped to the sandbox

- web: all of the paths relative to the http server

117

TACTIC Developer

get pipeline_processes
get_pipeline_processes(search_key, recur se=False)
DEPRECATED: use get_pipeline_processes info()
Retrieve the pipeline processes information of a specific sobject.
param:
search_key - auniqueidentifier key representing an sobject
keyparams:
recurse - boolean to control whether to display sub pipeline processes
return:

list - process names of the pipeline

118

TACTIC Developer

get pipeline_processes_info

get_pipeline_processes info(search_key, recurse=False, related_process=None)

Retrieve the pipeline processes information of a specific sobject. It provides information from the perspective of a
particular processiif related processis specified.

param:
search_key - auniqueidentifier key representing an sobject
keyparams:

recurse - boolean to control whether to display sub pipeline processes

related_process - given aprocess, it shows the input and output processes and contexts

return:

dictionary - process names of the pipeline or adictionary if related_processis specified

119

TACTIC Developer

get pipeline_xml
get_pipeline_ xml(search_key)
DEPRECATED: use get_pipeline xml_info()
Retrieve the pipeline of a specific sobject. The pipeline
return is an xml document and an optional dictionary of information.
param:
search_key - auniqueidentifier key representing an sobject
return:

dictionary - xml and the optional hierarachy info

120

TACTIC Developer

get pipeline_xml_info
get_pipeline xml_info(search_key, include_hierarchy=False)
Retrieve the pipeline of a specific sobject. The pipeline
returned is an xml document and an optional dictionary of information.
param:
search_key - auniqueidentifier key representing an sobject
keyparam:
include_hierarchy - includealist of dictionary with key info on each process of the pipeline
return:

dictionary - xml and the optional hierarachy info

121

TACTIC Developer

get preallocated path

get_preallocated_path(snapshot_code, file type='main’, file_ name="", mkdir=True, protocol='client_repo',
ext="")

Get the preallocated path for this snapshot. It assumes that

this checkin actually existsin the repository and will create virtual
entities to simulate a checkin. This method can be used to determine
where a checkin will go. However, the snapshot must exist

using create_snapshot() or some other method. For a pure virtual naming

simulator, use get_virtual_snapshot_path().
param:

snapshot_code - the code of a preallocated snapshot. This can be

create by get_snapshot()

keyparam:

file_type - thetype of file that will be checked in. Some naming
conventions make use of thisinformation to separate directories

for different file types

file_name - the desired file name of the preallocation. Thisinformation
may be ignored by the naming convention or it may usethisasa

base for the final file name

mkdir - an option which determines whether the directory of the
preallocation should be created

protocol - It'seither client_repo, sandbox, or None. It determines whether the
path isfrom aclient or server perspective

ext - forcethe extension of the file name returned
return:
string - the path where add_file() expects the file to be checked into

example:

it savestimeif you get the path and copy it to the final destination first.

122

TACTIC Developer

snapshot = my.server.create_snapshot (search_key, context)

snapshot _code = snapshot. get (' code')

file_nane = "input_file_nane.txt'

orig_path = "C/input_file_nane.txt'

path = mny.server.get_preal | ocat ed_pat h(snapshot _code, file_type, file_nane)

the path where it is supposed to go is generated
new_dir = os. path. di rnane(pat h)
if not os.path.exists(newdir):
os. makedi rs(new_dir)
shuti |l . copy(orig_path, path)
my.server.add_fil e(snapshot_code, path, file_type, npde='preallocate')

123

TACTIC Developer

get protocol

get_protocol()

return:

string - local or xmirpc

124

TACTIC Developer

get related types
get_related_types(search_type)
Get related search types given a search type
param:
search_type - the key identifying atype of sobject asregistered in
the search_type table.

return - list of search_types

125

TACTIC Developer

get_resource_path
get_resource_path(login=None)
Get the resource path of the current user. It differs from
create_resource_paths() which actualy create dir. The resource path
identifies the location of the file which is used to cache connection information.
An exmple of the contentsis shown below:
| ogi n=admi n
server =I ocal host

ti cket =30818057bf 561429f 97af 59243e6ef 21
proj ect =uni ttest

The contentsin the resource file represent the defaults to use

when connection to the TACTIC server, but may be overriden by the

API methods: set_ticket(), set_server(), set_project() or the

environment variables: TACTIC_TICKET, TACTIC_SERVER, and TACTIC_PROJECT
Typically this method is not explicitly called by API developers and

is used automatically by the API server stub. It attempts to get from

home dir first and then from temp_dir isit fails.

param:

login (optional) - login code. If not provided, it gets the current system user

return:

string - resource file path

126

TACTIC Developer

get_server_api_version
get_server_api_version()
return:

string - server API version

127

TACTIC Developer

get_server_version
get_server_version()
return:

string - server version

128

TACTIC Developer

get_snapshot

get_snapshot(search_key, context="publish", version='-1', level key=None, include paths=False,
include full_xml=False, include paths dict=False, include filessFalse, include web paths dict=False,
versionless=False)

Method to retrieve an sobject's snapshot

Retrieve the latest snapshot

param:

search_key - unique identifier of sobject whose snapshot we are

looking for

keyparam:

context - the context of the snapshot

version - snapshot version

revision - snapshot revision

level key -theuniqueidentifier of thelevel in the form of a search key
include_paths - flag to include alist of pathsto thefilesin this
snapshot.

include_full_xml - whether to include full xml in the return
include_paths dict - flag to specify whether to include a
__paths dict__ property containing adict of al pathsin the
dependent snapshots

include web_paths dict - flag to specify whether to include a
__web paths dict__ property containing adict of all web pathsin
the returned snapshots

include files - includes all of the file objects referenced in the
snapshots

versionless - boolean to return the versionless snapshot, which takes a version of

return:

dictionary - the resulting snapshot

example:

129

TACTIC Developer

search_key = 'prod/ asset ?proj ect =sanpl e3d&ode=chr 001’
snapshot = server.get_snapshot (search_key, context="icon', include_files=True)

get the versionl ess snapshot

search_key = 'prod/ asset ?proj ect =sanpl e3d&code=chr 001’

snapshot = server.get_snapshot (search_key, context="aninm, include_paths_dict=True
ver si onl ess=Tr ue)

130

TACTIC Developer

get table_info
get_table info(search_type)
Get column information of the table given a search type
param:
search_type - the key identifying atype of sobject asregistered in
the search_type table.

return - a dictionary of info for each column

131

TACTIC Developer

get ticket
get_ticket(login, password)
Get an authentication ticket based on alogin and password.
This function first authenticates the user and the issues a ticket.
The returned ticket is used on subsequent calls to the client api
param:
login - the user that is used for authentications
password - the password of that user
return:

string - ticket key

132

TACTIC Developer

get types from_instance
getsthe connector types from an instance type
param:
instance_type - the search type of the instance
return:
tuple - (from_type, parent_type)
atuple with the from_type and the parent_type. The from_typeis

the connector type and the parent type is the search type of the

parent of the instance

133

TACTIC Developer

get _unique_sobject
get_unique_sobject(search_type, data={})
Thisisaspecia convenience function which will query for an
sobject and if it doesn't exist, createit. It assumes that this
object should exist and spares the devel oper the logic of having to

query for the sobject, test if it doesn't exist and then createit.
param:

search_type - the type of the sobject

data - adictionary of name/value pairs that uniquely identify this
sobject

return:

sobject - unique sobject matching the critieriain data

134

TACTIC Developer

get virtual _snapshot_path

get_virtual_snapshot_path(search_key, context, snapshot_type="file", level_key=None, file type="main’,
file_name="", mkdirs=False, protocol="client_repo', ext="")

Create a virtual snapshot and returns a path that this snapshot
would generate through the naming conventions. Thisis most useful

testing naming conventions.

param:
snapshot creation:
search_key - auniqueidentifier key representing an sobject

context - the context of the checkin

keyparam:

snapshot_type - [optional] descibes what kind of a snapshot thisis.
More information about a snapshot type can be found in the
prod/snapshot_type sobject

description - [optional] optional description for this checkin

level _key -theuniqueidentifier of the level that this

isto be checked into

keyparam:

path creation:

file_type - thetype of file that will be checked in. Some naming
conventions make use of thisinformation to separate directories

for different file types

file_name - the desired file name of the preallocation. Thisinformation
may be ignored by the naming convention or it may use thisasa

base for the final file name

mkdir - an option which determines whether the directory of the

preallocation should be created

135

TACTIC Developer

protocol - It'seither client_repo, sandbox, or None. It determines whether the
path is from aclient or server perspective

ext - forcethe extension of the file name returned

return:

string - path as determined by the naming conventions

136

TACTIC Developer

get widget
get_widget(class_name, args={}, values={})
Get a defined widget
params:
class name - the fully qualified class name of the widget
keyparams:
args - keyword arguments required to create a specific widget
values - form values that are passed in from the interface
return:
string - html form of the widget
example:
class_name = 'TablelL ayoutwdg'
args={
'view": 'manage’,
‘search_type': ‘prod/asset’,
}

widget = server.get_ widget(class_name, args))

137

TACTIC Developer

get widget_setting
set_widget_settings(key, value)
Get widget setting for current user and project
param
key - unique key to identify this setting
return

value of setting

138

TACTIC Developer

group_checkin

group_checkin(search_key, context, file path, file range, snapshot_type="sequence", description=

file_type="main’, metadata={}, mode=None, is revision=False, info={})
Check in arange of files. A range of fileis defined as any group

of filesthat have some sequence of numbers grouping them together.

An example of thisincludes arange frames that are rendered.

Although it is possible to add each frame in arange using add file,

adding them as as sequence is lightweight, often significantly reducing

the number of database entries required. Also, it is understood that

test files form arange of related files, so that other optimizations

and manipulations can be operated on these files accordingly.

param:

search_key - auniqueidentifier key representing an sobject
file_path - expression for file range: ./blah.#####.jpg
file_type - thetyp of filethisis checked in as. Default = 'main’

file_range - string describing range of framesin the form '1

keyparam:

snapshot_type - type of snapshot this checkin will have

description - description related to this checkin

file_type - thetype of file that will be associated with this group
metadata - add metadata to snapshot

mode - determines whether the files passed in should be copied, moved
or uploaded. By default, thisis amanual process (for backwards
compatibility)

is revision - flagto set thisasarevision instead of aversion

info - dict of info to pass to the ApiClientCmd

return:

dictionary - snapshot

139

TACTIC Developer

insert

insert(search_type, data, metadata={}, parent_key=None, info={}, use id=False, triggers=True)

General insert for creating a new sobject

param:

search_type - the search_type attribute of the sType

data - adictionary of name/value pairs which will be used to update
the sobject defined by the search_key.

parent_key - set the parent key for this sobject

keyparam:

metadata - adictionary of values that will be stored in the metadata attribute
if available

info - adictionary of info to passto the ApiClientCmd

use id - useid in thereturned search key

triggers - boolean to fire trigger on insert

return:

dictionary - represent the sobject with it's current data

example:

insert anew asset

search_type = "prod/ asset"

{
'code': chro001,

‘description': 'Min Character'

}

insert(search_type, data)

insert a new note with a shot parent

get shot key
shot _key = server. buil d_search_key(search_type='prod/shot', code=' XA01')

data = {
‘context': 'nodel',

140

TACTIC Developer

‘note': 'This is a nodelling note',
"login': server.get_|ogin()

}

server.insert(search_type, data, parent_key=shot_key)

insert a note without firing triggers

search_type = "sthpw note"

data = {
'process': 'roto',
‘context': 'roto',
‘note': 'The keys | ook good."',
'project_code': "art'
}

server.insert(search_type, data, triggers=False)

141

TACTIC Developer

insert_multiple

insert_multiple(data, metadata=[], parent_key=None, use_id=False, triggers=True)
Insert for several sobjectsin one function call. The

data structure contains all the infon needed to update and is

formated as follows:

data=[

{ columnl: valuel, column2: value2, column3: value3 },

{ columnl: valuel, column2: value2, column3: vaue3 }

}

metadata = [

{ color: blue, height: 180},

{ color: orange, height: 170}

]

params:

search_type - the search_type attribute of the sType

data - adictionary of name/value pairs which will be used to update
the sobject defined by the search_key

Note: this can also be an array. Each data dictionary element in

the array will be applied to the corresponding search key

keyparam:

parent_key - set the parent key for this sobject

use_id - boolean to control if id is used in the search_key in returning sobject dict
triggers - boolean to fire trigger on insert

return:

alist of al the inserted sobjects

142

TACTIC Developer

insert_update

insert_update(search_key, data, metadata={}, parent_key=None, info={}, use id=False, trigger s=True)
Insert if the entry does not exist, update otherwise

param:

search_key - auniqueidentifier key representing an sobject.

data - adictionary of name/value pairs which will be used to update

the sobject defined by the search_key

keyparam:

metadata - adictionary of valuesthat will be stored in the metadata attribute if available
parent_key - set the parent key for this sobject

info - adictionary of info to pass to the ApiClientCmd

use id - useid inthereturned search key

triggers - boolean to fire trigger on insert

return:

dictionary - represent the sobject with its current data.

143

TACTIC Developer

log

log(level, message, category="default")

Log amessage in the logging queue. It is often difficult to see output

of atrigger unless you are running the server in debug mode.

In production mode, the server sends the output to log files.

Thelog files are general buffered.

It cannot be predicted exactly when buffered output will be dumped to afile.
Thislog() method will make arequest to the server.

The message will be immediately stored in the database in the debug log table.
param:

level - critical|error|jwarning|infoldebug

message - freeform string describing the entry

keyparam:

category - alabel for the type of message being logged.

It defaults to "default”

144

TACTIC Developer

query

query(search_type, filters=[], columns=[], order_bys=[], show retired=False, limit=None, offset=None,
single=False, distinct=None, return_sobjects=False)

General query for sobject information

param:
search_type - the key identifying a type of sobject asregistered in

the search_type table.

keyparam:

filters - an array of filtersto ater the search

columns - an array of columns whose values should be
retrieved

order_bys - an array of order_by to alter the search
show_retired - setswhether retired sobjects are also
returned

limit - sets the maximum number of results returned
single - returns only a single object

distinct - specify adistinct column

return_sobjects - return sobjectsinstead of dictionary. This

works only when using the API on the server.
return:
list of dictionary/sobjects - Each array item represents an sobject

and isadictionary of name/value pairs

example:

filters =[]

filters.append(("code", "X&02"))

order_bys = ['tinestanp desc']

colums = ['code']

server. query(ticket, "prod/shot", filters, colums, order_bys)

The arguments "filters", "columns", and "order_bys" are optional

145

TACTIC Developer

The "filters' argument is alist. Each list item represents an

individual filter. The forms are as follows:

(col um,
(col um,
(col um,

val ue)
(val uel, val ue2))
op, val ue)

where op is ('like',

(val ue)

vt

-> where
-> where
-> where
il '>:'!

-> where

colum = val ue
colum in (val uel
col um op val ue

rst P liSl’l_~l

val ue

val ue2)

| ~!

1)

146

TACTIC Developer

guery_snapshots

query_snapshots(filters=None, columns=None, order_bys=[], show_retired=False, limit=None, offset=None,
single=False, include_paths=False, include full xml=False, include paths dict=False, include parent=False,
include_files=False)

thin wrapper around query, but is specific to querying snapshots

with some useful included flags that are specific to snapshots

params:

ticket - authentication ticket

filters - (optional) an array of filters to alter the search

columns - (optional) an array of columns whose values should be
retrieved

order_bys - (optional) an array of order_by to alter the search
show_retired - (optional)

returned

limit - sets the maximum number of results returned

single - returns asingle sobject that is not wrapped up in an array
include paths - flag to specify whether to includea__paths _ property
containing alist of al pathsin the dependent snapshots
include_paths dict - flag to specify whether to include a
__paths dict__ property containing adict of al pathsin the

dependent snapshots

include_full_xml - flag to return the full xml definition of a snapshot
include parent - includesall of the parent attributesina__parent__ dictionary
include files - includes all of the file objects referenced in the

snapshots

return:

list of snapshots

147

TACTIC Developer

reactivate_sobject

reactivate_sobject(search_key)

Invoke the reactivate method.
param:
search_key - the unige key identifying the sobject.

return:
dictionary - sobject that represents values of the sobject in the

form name:value pairs

148

TACTIC Developer

redo
redo(transaction_ticket=None, transaction_id=None)
Redo an operation. If no transaction id is given, then the last

undone operation of this user on this project is redone

keyparam:
transaction_ticket - explicitly redo a specific transaction

transaction_id - explicitly redo a specific transaction by id

149

TACTIC Developer

retire_sobject
retire_sobject(search_key)
Invoke the retire method. Thisis preferred over delete_sobject if
you are not sure whether other sobjects has dependency on this.
param:
search_key - the unige key identifying the sobject.
return:
dictionary - sobject that represents values of the sobject in the

form name:value pairs

150

TACTIC Developer

set_current_snapshot
set_current_snapshot(snapshot_code)
Set this snapshot as a"current” snapshot
param:

snapshot_code - unique code of snapshot

return:

string - the resulting snapshot xml

151

TACTIC Developer

set_login_ticket
set_login_ticket(ticket)

Set the login ticket with the ticket key

152

TACTIC Developer

set_project
set_project(project_code)

Set the project code

153

TACTIC Developer

set_protocol

get_protocol()

params

string - local or xmirpc

154

TACTIC Developer

set_server

set_server(server_name)

Set the server namefor thisXML - RPC server

155

TACTIC Developer

set_widget_setting
set_widget_settings(key, value)
Set widget setting for current user and project
param
key - unique key to identify this setting
value - value the setting should be set to
return

None

156

TACTIC Developer

simple_checkin

simple_checkin(search_key, context, file path, snapshot_type="file", description="No description”,

use handoff_dir=False, file type="main", is current=True, level_key=None, breadcrumb=False,
metadata={}, mode=None, is revision=False, info={}, keep_file hame=False, create icon=True,
checkin_cls='pyasm.checkin.FileCheckin', context_index_padding=None, checkin_type="strict",

source_path=None, version=None)

Simple method that checksin afile.

param:
search_key - auniqueidentifier key representing an sobject
context - the context of the checkin

file_path - path of thefile that was previously uploaded

keyparam:

snapshot_type - [optional] descibes what kind of a snapshot thisis.
More information about a snapshot type can be found in the
prod/snapshot_type sobject

description - [optional] optional description for this checkin
file_type - [optional] optional description for thisfile_type

is current - flagto determineif this checkin isto be set as current
level_key - theuniqueidentifier of the level that this

is to be checked into

breadcrumb - flag to leave a .snapshot breadcrumb file containing
information about what happened to a checked in file

metadata - adictionary of valuesthat will be stored as metadata
on the snapshot

mode - inplace, upload, copy, move

is revision - flag to set thisasarevision instead of aversion
create icon - flag to create anicon on checkin

info - dict of info to passto the ApiClientCmd

keep_file_ name - keep the original file name

checkin_cls - checkin class

context_index_padding - determines the padding used for context

157

TACTIC Developer

indexing: ie: design/0001
checkin_type - auto or strict which controls whether to auto create versionless
source_path - explicitly give the source path

version - force aversion for this check

return:

dictionary - representation of the snapshot created for this checkin

158

TACTIC Developer

split_search_key
split_search_key(search_key)

Convenience method to split asearch_key inintoits search_type and search_code/id components. Note: only accepts
the new form prod/asset?project=sample3d& code=chr001

param:

search_key - the unique identifier of a sobject

return:

tuple - search type, search code/id

159

TACTIC Developer

start

start(title, description="")

Start atransaction. All commands using the client API are bound
in atransaction. The combination of start(), finish() and abort()
makes it possible to group aseries of APl commandsin asingle
transaction. The start/finish commands are not necessary for
query operations (like query(...), get_snapshot(...), etc).
param:

title - thetitle of the command to be executed. Thiswill show up on

transaction log

keyparam:

description - the description of the command. Thisis more detailed.

example:

A full transaction inserting 10 shots. If an error occurs, al 10

inserts will be aborted.

server.start (' Start addi ng shots')
try:

for i in range(0, 10):

server.insert("prod/shot", { 'code': 'X&®.3d' % })

except:

server. abort ()
el se:

server.finish("10 shots added")

160

TACTIC Developer

undo

undo(transaction_ticket=None, transaction_id=None, ignore_files=False)
undo an operation. If no transaction id is given, then the last

operation of this user on this project is undone

keyparam:

transaction_ticket - explicitly undo a specific transaction
transaction_id - explicitly undo a specific transaction by id
ignore files - flag which determines whether the files should

also be undone. Useful for large preall coated checkins.

161

TACTIC Developer

update
update(search_key, data={}, metadata={}, parent_key=None, info={}, use_id=False, trigger s=True)

General update for updating sobject

param:
search_key - auniqueidentifier key representing an sobject.
Note: this can also be an array, in which case, the data will

be updated to each sobject represented by this search key

keyparam:

data - adictionary of name/value pairs which will be used to update

the sobject defined by the search_key

Note: this can also be an array. Each data dictionary element in

the array will be applied to the corresponding search key

parent_key - set the parent key for this sobject

info - adictionary of info to passto the ApiClientCmd

metadata - adictionary of valuesthat will be stored in the metadata attribute if available
use id - useid inthereturned search key

triggers - boolean to fire trigger on update

return:
dictionary - represent the sobject with its current data.

If search_key isan array, Thiswill be an array of dictionaries

162

TACTIC Developer

update_config
update _config(search_type, view, element_names)
Update the widget configuration like ordering for aview
param:
search_type - search type that this config relates to
view - view to look for the element
element_names - element namesin alist
return:

string - updated config xml snippet

163

TACTIC Developer

update_multiple

update_multiple(data, triggers=True)

Update for several sobjects with different datain one function call. The
data structure contains all the information needed to update and is
formated as follows:

data={

search_key1: { columnl: valuel, column2: value2 }

search_key2: { columnl: valuel, column2: value2 }
}
params:
data - data structure containing update information for al
sobjects
keyparam:
data - adictionary of name/value pairs which will be used to update
the sobject defined by the search_key
Note: this can also be an array. Each data dictionary element in
the array will be applied to the corresponding search key

triggers - boolean to fire trigger on insert

return:

None

164

TACTIC Developer

upload file

upload_file(path)

Use http protocol to upload afile through http

param:

path - the name of the file that will be uploaded

165

	TACTIC Developer
	Table of Contents
	Developer Start-up
	Development Concepts
	Architecture Overview
	The TACTIC Script Editor

	Client API
	Client API Setup
	Client API Structure
	Basic Operations in Python and Javascript
	Checkin / Checkout Operations
	Snapshot Dependency

	Changes
	Search ID to Search Code

	Custom Widgets
	Widget Architecture
	Custom Layout Editor
	Custom Widget Basics
	Widget Development

	Plugins
	Plugin Manager interface
	Create a Plugin
	Packaging a Plugin

	Expression Development
	Using Expressions in Scripting

	Validation
	Validation Set-up

	TACTIC Python Client API Reference
	__init__
	abort
	add_config_element
	add_dependency
	add_dependency_by_code
	add_directory
	add_file
	add_group
	add_initial_tasks
	build_search_key
	build_search_type
	checkout
	clear_upload_dir
	create_search_type
	create_snapshot
	create_task
	delete_sobject
	directory_checkin
	download
	eval
	execute_cmd
	execute_pipeline
	execute_python_script
	finish
	get_all_children
	get_all_dependencies
	get_all_paths_from_snapshot
	get_base_dirs
	get_by_search_key
	get_child_types
	get_client_api_version
	get_client_dir
	get_client_version
	get_column_info
	get_column_names
	get_config_definition
	get_dependencies
	get_expanded_paths_from_snapshot
	get_full_snapshot_xml
	get_handoff_dir
	get_home_dir
	get_info_from_user
	get_md5_info
	get_parent
	get_parent_type
	get_path_from_snapshot
	get_paths
	get_pipeline_processes
	get_pipeline_processes_info
	get_pipeline_xml
	get_pipeline_xml_info
	get_preallocated_path
	get_protocol
	get_related_types
	get_resource_path
	get_server_api_version
	get_server_version
	get_snapshot
	get_table_info
	get_ticket
	get_types_from_instance
	get_unique_sobject
	get_virtual_snapshot_path
	get_widget
	get_widget_setting
	group_checkin
	insert
	insert_multiple
	insert_update
	log
	query
	query_snapshots
	reactivate_sobject
	redo
	retire_sobject
	set_current_snapshot
	set_login_ticket
	set_project
	set_protocol
	set_server
	set_widget_setting
	simple_checkin
	split_search_key
	start
	undo
	update
	update_config
	update_multiple
	upload_file

